SUBSTOICHIOMETRIC AMOUNTS OF THE MOLECULAR CHAPERONES GROEL AND GROES PREVENT THERMAL-DENATURATION AND AGGREGATION OF MAMMALIAN MITOCHONDRIAL MALATE-DEHYDROGENASE INVITRO

被引:72
作者
HARTMAN, DJ
SURIN, BP
DIXON, NE
HOOGENRAAD, NJ
HOJ, PB
机构
[1] LA TROBE UNIV,DEPT BIOCHEM,BUNDOORA,VIC 3083,AUSTRALIA
[2] AUSTRALIAN NATL UNIV,RES SCH CHEM,CTR MOLEC STRUCT & FUNCT,CANBERRA,ACT 2601,AUSTRALIA
关键词
ESCHERICHIA-COLI; ENZYME REACTIVATION; PROTEIN REFOLDING; ATP;
D O I
10.1073/pnas.90.6.2276
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The molecular chaperones GroEL and GroES were produced at very high levels in Escherichia coli, purified, and shown to protect pig mitochondrial malate dehydrogenase (MDH) against thermal inactivation in vitro. The apparent rate of MDH inactivation at 37-degrees-C was reduced by a factor of at least 5 in a process which required only GroEL, GroES, and ATP. GroEL alone did not protect MDH against thermal inactivation but kept the denatured protein soluble and thereby prevented its aggregation. Reactivation of this soluble and inactive form of MDH could be achieved by addition of GroES even after 120 days of storage at -20-degrees-C. Protection could be extended for more than 24 hr at 37-degrees-C and was observed at molar ratios of chaperones to MDH as low as 1:4, suggesting that GroEL and GroES perform multiple turnovers in the absence of auxiliary chaperones. The availability of these chaperones in large quantities combined with the apparent promiscuity of GroEL binding shows great potential for stabilization of many proteins for which thermostable variants are not available. We speculate that GroEL and GroES perform similar protective roles in vivo and thereby increase the half-life of proteins which otherwise might aggregate under physiological conditions.
引用
收藏
页码:2276 / 2280
页数:5
相关论文
共 42 条
[1]  
BOCHKAREVA ES, 1992, J BIOL CHEM, V267, P6796
[2]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[3]   UNCOATING ATPASE IS A MEMBER OF THE 70 KILODALTON FAMILY OF STRESS PROTEINS [J].
CHAPPELL, TG ;
WELCH, WJ ;
SCHLOSSMAN, DM ;
PALTER, KB ;
SCHLESINGER, MJ ;
ROTHMAN, JE .
CELL, 1986, 45 (01) :3-13
[4]   MITOCHONDRIAL HEAT-SHOCK PROTEIN HSP60 IS ESSENTIAL FOR ASSEMBLY OF PROTEINS IMPORTED INTO YEAST MITOCHONDRIA [J].
CHENG, MY ;
HARTL, FU ;
MARTIN, J ;
POLLOCK, RA ;
KALOUSEK, F ;
NEUPERT, W ;
HALLBERG, EM ;
HALLBERG, RL ;
HORWICH, AL .
NATURE, 1989, 337 (6208) :620-625
[5]  
DILL KA, 1991, ANNU REV BIOCHEM, V60, P795, DOI 10.1146/annurev.biochem.60.1.795
[6]   EVIDENCE THAT GROEL, NOT SIGMA-32, IS INVOLVED IN TRANSCRIPTIONAL REGULATION OF THE VIBRIO-FISCHERI LUMINESCENCE GENES IN ESCHERICHIA-COLI [J].
DOLAN, KM ;
GREENBERG, EP .
JOURNAL OF BACTERIOLOGY, 1992, 174 (15) :5132-5135
[7]   MODIFIED BACTERIOPHAGE-LAMBDA PROMOTER VECTORS FOR OVERPRODUCTION OF PROTEINS IN ESCHERICHIA-COLI [J].
ELVIN, CM ;
THOMPSON, PR ;
ARGALL, ME ;
HENDRY, P ;
STAMFORD, NPJ ;
LILLEY, PE ;
DIXON, NE .
GENE, 1990, 87 (01) :123-126
[8]   SUPPRESSION OF THE ESCHERICHIA-COLI DNA46 MUTATION BY AMPLIFICATION OF THE GROES AND GROEL GENES [J].
FAYET, O ;
LOUARN, JM ;
GEORGOPOULOS, C .
MOLECULAR & GENERAL GENETICS, 1986, 202 (03) :435-445
[9]   THE GROES AND GROEL HEAT-SHOCK GENE-PRODUCTS OF ESCHERICHIA-COLI ARE ESSENTIAL FOR BACTERIAL-GROWTH AT ALL TEMPERATURES [J].
FAYET, O ;
ZIEGELHOFFER, T ;
GEORGOPOULOS, C .
JOURNAL OF BACTERIOLOGY, 1989, 171 (03) :1379-1385
[10]   PEPTIDE AND PROTEIN MOLECULAR-WEIGHT DETERMINATION BY ELECTROPHORESIS USING A HIGH-MOLARITY TRIS BUFFER SYSTEM WITHOUT UREA [J].
FLING, SP ;
GREGERSON, DS .
ANALYTICAL BIOCHEMISTRY, 1986, 155 (01) :83-88