APPLICATION OF LAPLACE TRANSFORM TO SOLUTION OF BOUNDARY LAYER EQUATIONS .3. MAGNETOHYDRODYNAMIC FALKNER-SKAN PROBLEM

被引:6
作者
APELBLAT, A
机构
[1] Israel Atomic Energy Commission, Nuclear Research Centre-Negev
关键词
D O I
10.1143/JPSJ.27.235
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The boundary layer equations for the magnetohydrodynamic version of the Falkner-Skan problem are solved with the use of the Laplace transform and the steepest descent technique. For the boundary layer flow of an electrically conducting fluid, past a semi-infinite flat plate, the viscous stress at the plate disappears when the adverse magnetodynamic pressure gradient is close to 1/11 U ∞2(1-S)x-13/11. The quantity S gives the ratio of the magnetic to kinetic energy and U∞ is the uniform velocity at the main flow. The possibility to extend the Laplace transform method to the evaluation of infinite integrals connected with the boundary condition at infinity is also demonstrated. © 1969, THE PHYSICAL SOCIETY OF JAPAN. All rights reserved.
引用
收藏
页码:235 / &
相关论文
共 50 条
  • [1] On the solution of Falkner-Skan equations
    Padé, O
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 285 (01) : 264 - 274
  • [2] ON SOLUTIONS OF FALKNER-SKAN BOUNDARY VALUE PROBLEM
    HASTINGS, SP
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (06): : 972 - &
  • [3] Optimal streaks in a Falkner-Skan boundary layer
    Sanchez-Alvarez, Jose J.
    Higuera, Maria
    Vega, Jose M.
    PHYSICS OF FLUIDS, 2011, 23 (02)
  • [4] Solution of Falkner-Skan Equations for Hypersonic Flows
    Lipatov, I. I.
    Ngo, K. T.
    FLUID DYNAMICS, 2020, 55 (04) : 525 - 533
  • [5] Exact analytic solution of a boundary value problem for the Falkner-Skan equation
    Sachdev, P. L.
    Kudenatti, Ramesh B.
    Bujurke, N. M.
    STUDIES IN APPLIED MATHEMATICS, 2008, 120 (01) : 1 - 16
  • [7] Falkner-Skan Boundary Layer Flow of a Sisko Fluid
    Khan, Masood
    Shahzad, Azeem
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2012, 67 (8-9): : 469 - 478
  • [8] ASYMPTOTIC APPROXIMANT FOR THE FALKNER-SKAN BOUNDARY LAYER EQUATION
    Belden, E. R.
    Dickman, Z. A.
    Weinstein, S. J.
    Archibee, A. D.
    Burroughs, E.
    Barlow, N. S.
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2020, 73 (01) : 36 - 50
  • [9] Series solution to the Falkner-Skan equation with stretching boundary
    Yao, Baoheng
    Chen, Jianping
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 208 (01) : 156 - 164
  • [10] A BOUNDARY VALUE PROBLEM RELATED TO FALKNER-SKAN EQUATION
    HASTINGS, SP
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (07): : 1080 - &