ORDERED COLORINGS

被引:63
作者
KATCHALSKI, M
MCCUAIG, W
SEAGER, S
机构
[1] TECHNION ISRAEL INST TECHNOL,DEPT MATH,IL-32000 HAIFA,ISRAEL
[2] UNIV VICTORIA,DEPT MATH,VICTORIA,BC V8W 3P4,CANADA
[3] MT ST VINCENT UNIV,DEPT MATH,HALIFAX,NS B3M 2J6,CANADA
关键词
D O I
10.1016/0012-365X(93)E0216-Q
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be a positive integer. An ordered k-colouring of a graph G is a function c from V(G) into {1,...,k} such that for every pair of distinct vertices x and y and for every (x,y)-path P, if c(x)=c(y), then there exists an internal vertex z of P such that c(x) < c(z). We prove some theorems on ordered colourings of trees and planar graphs, and examine the relationship between connectivity and ordered colourings. Let A be a set of graphs which is ordered by subgraphs and closed under subgraphs. We characterize when A is a well-quasi-order. A generalization of ordered colourings is given.
引用
收藏
页码:141 / 154
页数:14
相关论文
共 14 条
[1]  
BONDY JA, 1981, GRAPH THEORY APPLICA
[2]   OPTIMIZING OVER THE SUBTOUR POLYTOPE OF THE TRAVELING SALESMAN PROBLEM [J].
BOYD, SC ;
PULLEYBLANK, WR .
MATHEMATICAL PROGRAMMING, 1990, 49 (02) :163-187
[3]  
DING G, 1990, SUBGRAPHS WELL QUASI
[4]  
DZHIDZHEV KN, 1982, SIAM J ALGORITH DISC, V3, P229
[5]   CLIQUE TREE INEQUALITIES AND THE SYMMETRICAL TRAVELING SALESMAN PROBLEM [J].
GROTSCHEL, M ;
PULLEYBLANK, WR .
MATHEMATICS OF OPERATIONS RESEARCH, 1986, 11 (04) :537-569
[6]  
Higman G., 1952, P LOND MATH SOC, V3, P326, DOI 10.1112/plms/s3-2.1.326
[7]  
IYER AV, 1987, PDRC8709 GEORG I TEC
[8]  
IYER AV, 1987, OPTIMAL NODE RANKING
[9]  
KATCHALSKI M, 1988, 8839 U WAT DEP COMB
[10]  
Leiserson C. E., 1980, 21st Annual Symposium on Foundations of Computer Science, P270, DOI 10.1109/SFCS.1980.13