ASYMPTOTIC BEHAVIOR OF EIGENVALUES OF A BOUNDARY VALUE PROBLEM FOR A SECOND ORDER ELLIPTIC DIFFERENTIAL-OPERATOR EQUATION

被引:0
作者
Aliev, Bahram A. [1 ,2 ]
Kurbanova, Nargul K. [2 ]
机构
[1] Azerbaijan State Pedag Univ, AZ-1000 Baku, Azerbaijan
[2] Natl Acad Sci Azerbaijan, Inst Math & Mech, AZ-1141 Baku, Azerbaijan
来源
PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS | 2014年 / 40卷
关键词
differential-operator equation; elliptic equations; spectral parameter; eigenvalues; Regge problem; asymptotic formula;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, in the Hilbert space H we obtain asymptotic formulas for eigenvalues of a boundary value problems for differential operator equations in the case when both boundary conditions contain a spectral parameter.
引用
收藏
页码:23 / 29
页数:7
相关论文
共 12 条
[1]  
Aliev BA, 2006, ADV DIFFERENTIAL EQU, V11, P1081
[2]   SOLVABILITY OF THE BOUNDARY-VALUE PROBLEM FOR THE SECOND-ORDER ELLIPTIC DIFFERENTIAL-OPERATOR EQUATION WITH SPECTRAL PARAMETER IN THE EQUATION AND BOUNDARY CONDITIONS [J].
Aliev, B. A. .
UKRAINIAN MATHEMATICAL JOURNAL, 2010, 62 (01) :1-14
[3]  
ALIEV B. A., 2005, T NATL ACAD SCI PTMS, V25, P3
[4]  
ALIEV B. A., 2006, UKR MATH J, V58, P1146, DOI DOI 10.1007/s11253-006-0134-1
[5]   DISTRIBUTION OF EIGENVALUES AND TRACE FORMULA FOR THE STURM-LIOUVILLE OPERATOR EQUATION [J].
Bairamogly, M. ;
Aslanova, N. M. .
UKRAINIAN MATHEMATICAL JOURNAL, 2010, 62 (07) :1005-1017
[6]   CLASS OF BOUNDARY-VALUE PROBLEMS WITH SPECTRAL PARAMETER IN BOUNDARY-CONDITION [J].
BRUK, VM .
MATHEMATICS OF THE USSR-SBORNIK, 1976, 29 (02) :186-192
[7]  
Gorbachuk V. I, 1981, DIRECT INVERSE PROBL, P3
[8]  
Kerimov NB, 1999, SIBERIAN MATH J+, V40, P281
[9]  
OLEINIK L. A., 1986, SPECTRAL THEORY DIFF, P25
[10]  
Rybak M. A, 1980, UKR MATH J+, V32, P159, DOI [10.1007/BF01092795, DOI 10.1007/BF01092795]