BORN-OPPENHEIMER REVISITED

被引:23
作者
AHARONOV, Y
BENREUVEN, E
POPESCU, S
ROHRLICH, D
机构
[1] UNIV S CAROLINA,DEPT PHYS,COLUMBIA,SC 29208
[2] HEBREW UNIV JERUSALEM,RACH INST PHYS,IL-91904 JERUSALEM,ISRAEL
关键词
D O I
10.1016/0550-3213(91)90164-S
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
An algebraic approach to solving degenerate perturbation theory is exhibited. This approach is used to solve the canonical Berry phase problem in the Born-Oppenheimer approximation, as well as the analogous classical problem. The slow variables need not commute. Non-abelian phases and field theory anomalies are treated as examples. A non-adiabatic extension is suggested.
引用
收藏
页码:818 / 830
页数:13
相关论文
共 26 条
[1]   RENORMALIZATION OF CONFIGURATION SPACE INTO PHASE-SPACE - CAN NONREALIZABLE HAMILTONIANS BE REALIZED [J].
AHARONOV, Y ;
LERNER, EC .
PHYSICAL REVIEW D, 1979, 20 (08) :1877-1879
[2]   QUANTUM FRAMES OF REFERENCE [J].
AHARONOV, Y ;
KAUFHERR, T .
PHYSICAL REVIEW D, 1984, 30 (02) :368-385
[3]  
[Anonymous], 1978, MATH METHODS CLASSIC, DOI [DOI 10.1007/978-1-4757-1693-1, 10.1007/978-1-4757-1693-1]
[4]  
Berry M., 1989, GEO, P7
[6]   CLASSICAL ADIABATIC ANGLES AND QUANTAL ADIABATIC PHASE [J].
BERRY, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (01) :15-27
[7]  
BERRY MV, 1986, FUNDAMENTAL ASPECTS, P267
[8]  
Born M, 1927, ANN PHYS-BERLIN, V84, P0457
[9]   SEPARATION OF MOTIONS OF MANY-BODY SYSTEMS INTO DYNAMICALLY INDEPENDENT PARTS BY PROJECTION ONTO EQUILIBRIUM VARIETIES IN PHASE SPACE .2. [J].
CARMI, G ;
BOHM, D .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1964, 133 (2A) :A332-&
[10]  
CARMI G, 1964, PHYS REV, V133, pA319