LIE-POISSON GROUPS - REMARKS AND EXAMPLES

被引:5
作者
CAHEN, M
GUTT, S
OHN, C
PARKER, M
机构
[1] Université Libre de Bruxelles, Brussels, 1050, Campus de la Plaine, Bd. du Triomphe
关键词
AMS subject classifications (1980): 22E46; 53C57; 81C25;
D O I
10.1007/BF00429954
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The aim of this Letter is twofold. On the one hand, we discuss two possible definitions of complex structures on Poisson-Lie groups and we give a complete classification of the isomorphism classes of complex Lie-Poisson structures on the group SL(2, ℂ). On the other hand, we give an algebraic characterization of a class of solutions of the Yang-Baxter equations which contains the well-known Drinfeld solutions [1]; in particular, we prove the existence of a nontrivial Lie-Poisson structure on any simply connected real semi-simple Lie Group G. Other low dimensional examples will appear elsewhere. © 1990 Kluwer Academic Publishers.
引用
收藏
页码:343 / 353
页数:11
相关论文
共 8 条
[1]  
CAHEN M, LIE POISSON STRUCTUR
[2]  
Drinfeld V. G., 1986, P ICM BERKELEY, V1, P789
[3]  
GOTO M, 1978, LECTURE NOTES PURE A, V38
[4]  
GREUB W, 1976, PURE APPLIED MATH, V47
[5]  
KOBAYASHI S, 1969, F DIFFERENTIAL GEOME, V2
[6]  
LU JH, 1988, POISSON LIE GROUPS D
[7]  
OHN C, 1989, MEMOIRE LICENCE BRUX
[8]  
VERDIER JL, 1986, SEMINAIRE BOURBAKI