On an optimal control problem with discontinuous integrand

被引:0
作者
Aseev, Sergey Mironovich [1 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Moscow 119991, Russia
来源
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN | 2018年 / 24卷 / 01期
基金
俄罗斯科学基金会;
关键词
risk zone; state constraints; optimal control; Hamiltonian inclusion; Pontryagin maximum principle; nondegeneracy conditions;
D O I
10.21538/0134-4889-2018-24-1-15-26
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an optimal control problem for an autonomous differential inclusion with free terminal time and a mixed functional which contains the characteristic function of a given open set M subset of R-n in the integral term. The statement of the problem weakens the statement of the classical optimal control problem with state constraints to the case when the presence of admissible trajectories of the system in the set M is physically allowed but unfavorable due to safety or instability reasons. Using an approximation approach, necessary conditions for the optimality of an admissible trajectory are obtained in the form of Clarke's Hamiltonian inclusion. The result involves a nonstandard stationarity condition for the Hamiltonian. As in the case of the problem with a state constraint, the obtained necessary optimality conditions may degenerate. Conditions guaranteeing their nondegeneracy and pointwise nontriviality are presented. The results obtained extend the author's previous results to the case of a problem with free terminal time and more general functional.
引用
收藏
页码:15 / 26
页数:12
相关论文
共 20 条
[1]   The Maximum Principle for Optimal Control Problems with State Constraints by RV Gamkrelidze: Revisited [J].
Arutyunov, A. V. ;
Karamzin, D. Y. ;
Pereira, F. L. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 149 (03) :474-493
[2]  
Arutyunov A.V., 1991, J SOV MATH, V54, P1342, DOI [10.1007/BF01373649, DOI 10.1007/BF01373649]
[3]  
Arutyunov A.V., 2000, OPTIMALITY CONDITION, V526
[4]   Investigation of the degeneracy phenomenon of the maximum principle for optimal control problems with state constraints [J].
Arutyunov, AV ;
Aseev, SM .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1997, 35 (03) :930-952
[5]  
Aseev SM, 2017, T I MAT MEKH URO RAN, V23, P27, DOI 10.21538/0134-4889-2017-23-1-27-42
[6]   Necessary first-order conditions for optimal crossing of a given region [J].
Aseev S.M. ;
Smirnov A.I. .
Computational Mathematics and Modeling, 2007, 18 (4) :397-419
[7]  
Aseev SM, 2004, DOKL MATH, V69, P243
[8]  
Cesari L., 1983, OPTIMIZATION THEORY
[9]  
CLARKE FH, 1988, OPTIMIZATION NONSMOO
[10]   WHEN IS THE MAXIMUM PRINCIPLE FOR STATE CONSTRAINED PROBLEMS NONDEGENERATE [J].
FERREIRA, MMA ;
VINTER, RB .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 187 (02) :438-467