The tree- and clique-width of bipartite graphs in special classes

被引:0
作者
Lozin, V. V. [1 ]
Rautenbach, D. [2 ]
机构
[1] Rutgers State Univ, RUTCOR, 640 Bartholomew Rd, Piscataway, NJ 08854 USA
[2] Univ Bonn, Forsch Inst Diskrete Math, D-53113 Bonn, Germany
来源
AUSTRALASIAN JOURNAL OF COMBINATORICS | 2006年 / 34卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The tree- and clique-width are two graph parameters which are of primary importance in algorithmic graph theory because of the fact that many NP -hard graph problems admit polynomial-time solutions when restricted to graphs of bounded tree- or clique-width. Both parameters are known to be unbounded in the class of all bipartite graphs. We study the tree- and clique-width of bipartite graphs in special classes. The main result is a necessary condition for the tree- and clique-width to be bounded in subclasses of bipartite graphs defined by finitely many forbidden induced bipartite subgraphs. We use this result to analyze the tree- and clique-width of bipartite graphs in classes defined by a single forbidden induced subgraph.
引用
收藏
页码:57 / 67
页数:11
相关论文
共 11 条
[1]  
Boliac R, 2002, LECT NOTES COMPUT SC, V2518, P44
[2]  
Boliac R., 2001, DISCUSSIONES MATH GR, P293
[3]  
Brandstadt A, 2003, ARS COMBINATORIA, V67, P273
[4]   Upper bounds to the clique width of graphs [J].
Courcelle, B ;
Olariu, S .
DISCRETE APPLIED MATHEMATICS, 2000, 101 (1-3) :77-114
[5]  
Fouquet J.-L., 1999, International Journal of Foundations of Computer Science, V10, P513, DOI 10.1142/S0129054199000368
[6]   Bi-complement reducible graphs [J].
Giakoumakis, V ;
Vanherpe, JM .
ADVANCES IN APPLIED MATHEMATICS, 1997, 18 (04) :389-402
[7]  
Golumbic M. C., 2000, International Journal of Foundations of Computer Science, V11, P423, DOI 10.1142/S0129054100000260
[8]   Chordal bipartite graphs of bounded tree- and clique-width [J].
Lozin, V ;
Rautenbach, D .
DISCRETE MATHEMATICS, 2004, 283 (1-3) :151-158
[9]   Bipartite graphs without a skew star [J].
Lozin, VV .
DISCRETE MATHEMATICS, 2002, 257 (01) :83-100
[10]   Modular decomposition and transitive orientation [J].
McConnell, RM ;
Spinrad, JP .
DISCRETE MATHEMATICS, 1999, 201 (1-3) :189-241