SMALL OSCILLATIONS - A NEW SOLUTION BASED ON NON-NOETHERIAN SYMMETRIES

被引:2
|
作者
HOJMAN, SA
机构
[1] Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago
关键词
D O I
10.1063/1.530109
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new (non-Noetherian) symmetry transformation for the small oscillations problem is exhibited. A novel way to solve this classical problem, based on conservation laws constructed using the new symmetry, is presented. Applications of these results to other fields of physics are outlined.
引用
收藏
页码:2968 / 2974
页数:7
相关论文
共 50 条
  • [21] On a class of non-Noetherian V-rings
    VanHuynh, D
    Jain, SK
    LopezPermouth, SR
    COMMUNICATIONS IN ALGEBRA, 1996, 24 (09) : 2839 - 2850
  • [22] Non-Noetherian Cohen-Macaulay rings
    Hamilton, Tracy Dawn
    Marley, Thomas
    JOURNAL OF ALGEBRA, 2007, 307 (01) : 343 - 360
  • [23] Commutative Non-Noetherian Rings with the Diamond Property
    Miodrag C. Iovanov
    Algebras and Representation Theory, 2022, 25 : 705 - 724
  • [24] NON-COMMUTATIVE MINIMALLY NON-NOETHERIAN RINGS
    WATTERS, JF
    MATHEMATICA SCANDINAVICA, 1977, 40 (02) : 176 - 182
  • [25] NON-COMMUTATIVE MINIMALLY NON-NOETHERIAN RING
    HAUSEN, J
    JOHNSON, JA
    MATHEMATICA SCANDINAVICA, 1975, 36 (02) : 313 - 316
  • [26] Building Noetherian and non-Noetherian integral domains using power series
    Heinzer, W
    Rotthaus, C
    Wiegand, S
    IDEAL THEORETIC METHODS IN COMMUTATIVE ALGEBRA, 2001, 220 : 251 - 264
  • [27] Non-noetherian groups and primitivity of their group algebras
    Alexander, James
    Nishinaka, Tsunekazu
    JOURNAL OF ALGEBRA, 2017, 473 : 221 - 246
  • [28] Commutative Non-Noetherian Rings with the Diamond Property
    Iovanov, Miodrag C.
    ALGEBRAS AND REPRESENTATION THEORY, 2022, 25 (03) : 705 - 724
  • [29] A note on maximal non-Noetherian subrings of a domain
    Noômen Jarboui
    Ayada Jerbi
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2012, 53 (1): : 159 - 172
  • [30] Non-Noetherian down-up algebras
    Kirkman, E
    Kuzmanovich, J
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (11) : 5255 - 5268