HYPERBOLOIDAL CAUCHY DATA FOR VACUUM EINSTEIN EQUATIONS AND OBSTRUCTIONS TO SMOOTHNESS OF NULL INFINITY

被引:44
作者
ANDERSSON, L [1 ]
CHRUSCIEL, PT [1 ]
机构
[1] MAX PLANCK INST ASTROPHYS,W-8046 GARCHING,GERMANY
关键词
D O I
10.1103/PhysRevLett.70.2829
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Various works have suggested that the Bondi-Sachs-Penrose decay conditions on the gravitational field at null infinity are not generally representative of asymptotically flat spacetimes. We have made a detailed analysis of the constraint equations for ''asymptotically hyperboloidal'' initial data and find that log terms arise generically in asymptotic expansions. These terms are absent in the corresponding Bondi-Sachs-Penrose expansions, and can be related to explicit geometric quantities. We have nevertheless shown that there exists a large class of ''nongeneric'' solutions of the constraint equations, the evolution of which leads to spacetimes satisfying the Bondi-Sachs-Penrose smoothness conditions.
引用
收藏
页码:2829 / 2832
页数:4
相关论文
共 21 条
[1]  
ANDERSSON L, 1992, COMMUN MATH PHYS, V147, P587
[2]  
ANDERSSON L, IN PRESS ASYMPTOTIC
[3]  
ANDERSSON L, IN PRESS HYPERBOLOID
[4]  
BICAK J, 1989, EXACT RAD SPACE TIME
[5]   GRAVITATIONAL WAVES IN GENERAL RELATIVITY .7. WAVES FROM AXI-SYMMETRIC ISOLATED SYSTEMS [J].
BONDI, H ;
VANDERBU.MG ;
METZNER, AWK .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1962, 269 (1336) :21-&
[6]  
CHOQUETBRUHAT Y, 1980, GENERAL RELATIVITY G
[7]  
CHRISTODOULOU D, IN PRESS GLOBAL NONL
[8]  
CHRUSCIEL PT, IN PRESS BONDI EXPAN
[9]  
DAMOUR T, 1986, ANAL CALCULATIONS A, P365
[10]  
FRIEDRICH H, 1986, COMMUN MATH PHYS, V91, P445