RANDOM CENSORING;
KOZIOL-GREEN MODEL;
REGULAR VARIATION;
WEAK CONVERGENCE;
GAUSSIAN PROCESS;
D O I:
10.1016/0378-3758(92)90150-Q
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
In the Koziol-Green or proportional hazards model of random censorship, the survival distribution (GBAR) or the censoring variable is a power function of the survival distribution FBAR of the lifetime, with the exponent in the power being the censoring parameter. In this paper, we propose a more general (semiparametric) model G(t)BAR = F(t)theta-BAR L(F(t))BAR, where L is some slowly varying function. A specific parametric example of an L-function is found to perform well for many well-known survival data sets. In this case estimators of the parameters and the survival function FBAR are proposed and asymptotics are given. This model is also compared with a recent proposal of Pena and Rohatgi (1989).
机构:
Univ Calif San Diego, Dept Family & Prevent Med, Div Biostat & Bioinformat, La Jolla, CA 92093 USAUniv Calif San Diego, Dept Family & Prevent Med, Div Biostat & Bioinformat, La Jolla, CA 92093 USA
Xu, Ronghui
Gamst, Anthony
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif San Diego, Dept Family & Prevent Med, Div Biostat & Bioinformat, La Jolla, CA 92093 USA