QUANTUM-MECHANICAL SEXTIC ANHARMONIC-OSCILLATORS - NORMALIZABILITY OF WAVE-FUNCTIONS AND SOME EXACT EIGENVALUES

被引:15
作者
SINGH, CA
SINGH, SB
SINGH, KD
机构
[1] Department of Physics, Manipur University, Imphal
关键词
D O I
10.1016/0375-9601(90)90486-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that the usually tacitly assumed normalisability of the wavefunctions of the anharmonic oscillators with potential V(y)= 1 2(ay2+by4+cy6) (y=x for the 1-d problem, r for the 3-d problem) is generally not valid. A criterion for strict invalidity of the truncated Hill-determinant method is given. Some exact eigenvalues are obtained. © 1990.
引用
收藏
页码:389 / 392
页数:4
相关论文
共 9 条
[1]   ANHARMONIC-OSCILLATORS IN HIGHER DIMENSION - ACCURATE ENERGY EIGENVALUES AND MATRIX-ELEMENTS [J].
BHARGAVA, VTA ;
MATHEWS, PM ;
SEETHARAMAN, M .
PRAMANA, 1989, 32 (02) :107-115
[2]   HILL DETERMINANT - APPLICATION TO AHNARMONIC OSCILLATOR [J].
BISWAS, SN ;
SAXENA, RP ;
SRIVASTAVA, PK ;
VARMA, VS ;
DATTA, K .
PHYSICAL REVIEW D, 1971, 4 (12) :3617-+
[3]   EIGENVALUES OF LAMBDA X2M ANHARMONIC OSCILLATORS [J].
BISWAS, SN ;
DATTA, K ;
SAXENA, RP ;
SRIVASTAVA, PK ;
VARMA, VS .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (09) :1190-1195
[4]   EXACT ANALYTIC SOLUTIONS FOR THE QUANTUM-MECHANICAL SEXTIC ANHARMONIC-OSCILLATOR [J].
DUTTA, AK ;
WILLEY, RS .
JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (04) :892-900
[5]   AN EXACT SOLUTION OF THE SCHRODINGER WAVE-EQUATION FOR A SEXTIC POTENTIAL [J].
KAUSHAL, RS .
PHYSICS LETTERS A, 1989, 142 (2-3) :57-58
[6]   ANHARMONIC-OSCILLATOR WITH GENERAL POLYNOMIAL POTENTIAL [J].
SHARMA, GS ;
SHARMA, LK .
JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (10) :2947-2952
[7]   ANHARMONIC-OSCILLATOR AND ANALYTIC THEORY OF CONTINUED FRACTIONS [J].
SINGH, V ;
BISWAS, SN ;
DATTA, K .
PHYSICAL REVIEW D, 1978, 18 (06) :1901-1908
[8]   THE HILL DETERMINANT METHOD IN APPLICATION TO THE SEXTIC OSCILLATOR - LIMITATIONS AND IMPROVEMENT [J].
TATER, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (09) :2483-2495
[9]   COMMENT ON THE GREEN-FUNCTION FOR THE ANHARMONIC-OSCILLATORS [J].
ZNOJIL, M .
PHYSICAL REVIEW D, 1982, 26 (12) :3750-3751