Differential responses to salt-induced oxidative stress in three phylogenetically related plant species: Arabidopsis thaliana (glycophyte), Thellungiella salsuginea and Cakile maritima (halophytes). Involvement of ROS and NO in the control of K+/Na+ homeostasis

被引:10
作者
Houmani, Hayet [1 ,2 ]
Corpas, Francisco J. [1 ]
机构
[1] CSIC, Dept Biochem Cell & Mol Biol Plants, Estn Expt Zaidin, Grp Antioxidants Free Rad & Nitr Oxide Biotechnol, Apartado 419, E-18080 Granada, Spain
[2] Ctr Biotechnol Borj Cedria, Lab Extremophile Plants, POB 901, Hammam Lif 2050, Tunisia
关键词
Brassicaceae; differential tolerance; K+/Na+ homeostasis; nitric oxide; salinity; ROS;
D O I
10.3934/biophy.2016.3.380
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Salinity, which is usually associated with a nitro-oxidative stress component, is one of the major environmental factors limiting plant growth and development. Plants have thus developed specific ways of dealing with this problem. The compartmentalization of sodium (Na+) ions in vacuoles and the capacity to sharply discriminate between potassium (K+) and Na+ in order to maintain high K+/Na+ ratios are two of the most effective strategies to overcome salt stress. Plants require large amounts of K+ to maximize growth and yields. This macronutrient is involved in physiological processes such as growth, photosynthesis, osmoregulation, enzyme activation, stomatal movement, water and nutrient transport via the xylem and protein synthesis. Resistance to salt stress is mainly related to the capacity of plants to maintain improved K+ uptake despite competition from Na+. The Brassicaceae family includes species such as Arabidopsis thaliana (plant model for glycophytes), Thellungiella salsuginea and Cakile maritima (plant models for halophytes), which exhibit significant variations in response to salt stress. In this review, we provide a comprehensive update with respect to differential responses to salt stress in these three plant species, with particular emphasis on the potential involvement of reactive oxygen species (ROS) and nitric oxide (NO) in maintaining K+/Na+ homeostasis and their contribution to salt tolerance.
引用
收藏
页码:380 / 397
页数:18
相关论文
共 118 条
[1]   Transport, signaling, and homeostasis of potassium and sodium in plants [J].
Adams, Eri ;
Shin, Ryoung .
JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2014, 56 (03) :231-249
[2]   Cesium Inhibits Plant Growth through Jasmonate Signaling in Arabidopsis thaliana [J].
Adams, Eri ;
Abdollahi, Parisa ;
Shin, Ryoung .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2013, 14 (03) :4545-4559
[3]   Expression of KT/KUP genes in arabidopsis and the role of root hairs in K+ uptake [J].
Ahn, SJ ;
Shin, R ;
Schachtman, DP .
PLANT PHYSIOLOGY, 2004, 134 (03) :1135-1145
[4]   The F130S point mutation in the Arabidopsis high-affinity K transporter AtHAK5 increases K+ over Na+ and Cs+ selectivity and confers Na+ and Cs+ tolerance to yeast under heterologous expression [J].
Aleman, Fernando ;
Caballero, Fernando ;
Rodenas, Reyes ;
Rivero, Rosa M. ;
Martinez, Vicente ;
Rubio, Francisco .
FRONTIERS IN PLANT SCIENCE, 2014, 5
[5]   Root K+ Acquisition in Plants: The Arabidopsis thaliana Model [J].
Aleman, Fernando ;
Nieves-Cordones, Manuel ;
Martinez, Vicente ;
Rubio, Francisco .
PLANT AND CELL PHYSIOLOGY, 2011, 52 (09) :1603-1612
[6]   Differential regulation of the HAK5 genes encoding the high-affinity K+ transporters of Thellungiella halophila and Arabidopsis thaliana [J].
Aleman, Fernando ;
Nieves-Cordones, Manuel ;
Martinez, Vicente ;
Rubio, Francisco .
ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2009, 65 (2-3) :263-269
[7]   A Single Amino-Acid Substitution in the Sodium Transporter HKT1 Associated with Plant Salt Tolerance [J].
Ali, Akhtar ;
Raddatz, Natalia ;
Aman, Rashid ;
Kim, Songmi ;
Park, Hyeong Cheol ;
Jan, Masood ;
Baek, Dongwon ;
Khan, Irfan Ullah ;
Oh, Dong-Ha ;
Lee, Sang Yeol ;
Bressan, Ray A. ;
Lee, Keun Woo ;
Maggio, Albino ;
Pardo, Jose M. ;
Bohnert, Hans J. ;
Yun, Dae-Jin .
PLANT PHYSIOLOGY, 2016, 171 (03) :2112-2126
[8]   TsHKT1;2, a HKT1 Homolog from the Extremophile Arabidopsis Relative Thellungiella salsuginea, Shows K+ Specificity in the Presence of NaCl [J].
Ali, Zahir ;
Park, Hyeong Cheol ;
Ali, Akhtar ;
Oh, Dong-Ha ;
Aman, Rashid ;
Kropornicka, Anna ;
Hong, Hyewon ;
Choi, Wonkyun ;
Chung, Woo Sik ;
Kim, Woe-Yeon ;
Bressan, Ray A. ;
Bohnert, Hans J. ;
Lee, Sang Yeol ;
Yun, Dae-Jin .
PLANT PHYSIOLOGY, 2012, 158 (03) :1463-1474
[9]   Role of superoxide dismutases (SODs) in controlling oxidative stress in plants [J].
Alscher, RG ;
Erturk, N ;
Heath, LS .
JOURNAL OF EXPERIMENTAL BOTANY, 2002, 53 (372) :1331-1341
[10]   Expression of the AKT1-type K+ channel gene from Puccinellia tenuiflora, PutAKT1, enhances salt tolerance in Arabidopsis [J].
Ardie, Sintho Wahyuning ;
Liu, Shenkui ;
Takano, Tetsuo .
PLANT CELL REPORTS, 2010, 29 (08) :865-874