CONTINUOUS IMAGES OF ORDERED COMPACTA ARE REGULAR SUPERCOMPACT

被引:5
作者
BULA, W [1 ]
NIKIEL, J [1 ]
TUNCALI, HM [1 ]
TYMCHATYN, ED [1 ]
机构
[1] UNIV SASKATCHEWAN,DEPT MATH,SASKATOON S7N 0W0,SASKATCHEWAN,CANADA
基金
加拿大自然科学与工程研究理事会;
关键词
SUPERCOMPACT; REGULAR SUPERCOMPACT; COMPACT ORDERED SPACE; ORDERED CONTINUUM; CONTINUOUS IMAGE; T-SET;
D O I
10.1016/0166-8641(92)90005-K
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is proved that each Hausdorff space which is the continuous image of a compact ordered space is regular supercompact. In particular, each rim-finite continuum is supercompact. The latter corollary provides a positive answer to a 1977 question of J. van Mill.
引用
收藏
页码:203 / 221
页数:19
相关论文
共 32 条
  • [1] Bell M., 1990, COMMENT MATH U CAROL, V31, P775
  • [2] CORNETTE JL, 1974, T AM MATH SOC, V199, P255
  • [3] DEBSKI W, ANOTHER GEOMETRIC PR
  • [4] DEGROOT J, 1969, CONTRIBUTIONS EXTENS, P89
  • [5] Engelking R, 1977, MATH MONOGRAPHS, V60
  • [6] Hocking J. G., 1961, TOPOLOGY
  • [7] KIMURA T, 1984, QUESTIONS ANSWERS GE, V2, P69
  • [8] Kuratowski K., 1968, TOPOLOGY, VII
  • [9] IMAGES OF ORDERED COMPACTA ARE LOCALLY PERIPHERALLY METRIC
    MARDESIC, S
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1967, 23 (03) : 557 - &
  • [10] MARDESIC S, 1966, GENERAL TOPOLOGY ITS, V2, P248