On Moments of Gamma-Exponentiated Functional Distribution

被引:0
作者
Gorska, Katarzyna [1 ]
Horzela, Andrzej [2 ]
Pogany, Tibor [3 ]
机构
[1] Polish Acad Sci, H Niewodniczariski Inst Nucl Phys, Div Theoret Phys, Ul Eliasza Radzikowskiego 152, PL-31342 Krakow, Poland
[2] Univ Rijeka, Fac Maritime Studies, Studentska 2, HR-51000 Rijeka, Croatia
[3] Obuda Univ, Inst Appl Math, Becsi Ut 96-b, H-1034 Budapest, Hungary
关键词
Gamma-exponentiated functional distribution; moments; Lagrange-Burmann inversion theorem; Lambert W-function; quantile function;
D O I
10.3390/stats1010002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we discuss the development of a new Gamma exponentiated functional GE(alpha, h) distribution, using the Gamma baseline distribution generating method by Zografos and Balakrishnan. The raw moments of the Gamma exponentiated functional GE(alpha, h) distribution are derived. The related probability distribution class is characterized in terms of Lambert W-function.
引用
收藏
页码:14 / 20
页数:7
相关论文
共 20 条
[1]  
AL-Hussaini E.K., 2015, ATLANTIS STUDIES PRO
[2]  
Castellares F., 2015, J EGYPT MATH SOC, V23, P382
[3]  
Cordeiro G.M., 2013, J DATA SCI, V11, P1
[4]   The Kumaraswamy Gumbel distribution [J].
Cordeiro, Gauss M. ;
Nadarajah, Saralees ;
Ortega, Edwin M. M. .
STATISTICAL METHODS AND APPLICATIONS, 2012, 21 (02) :139-168
[5]   The Kumaraswamy generalized gamma distribution with application in survival analysis [J].
de Pascoa, Marcelino A. R. ;
Ortega, Edwin M. M. ;
Cordeiro, Gauss M. .
STATISTICAL METHODOLOGY, 2011, 8 (05) :411-433
[6]   Hypergeometric Type Functions and Their Symmetries [J].
Derezinski, Jan .
ANNALES HENRI POINCARE, 2014, 15 (08) :1569-1653
[7]   Modeling failure time data by Lehman alternatives [J].
Gupta, RC ;
Gupta, PL ;
Gupta, RD .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1998, 27 (04) :887-904
[8]  
Kilbas A.A., 2006, THEORY APPL FRACTION, VVolume 204, DOI 10.1016S0304-ff////0208(06)80001-0
[9]   THE POWER OF RANK TESTS [J].
LEHMANN, EL .
ANNALS OF MATHEMATICAL STATISTICS, 1953, 24 (01) :23-43
[10]  
Olver F.W., 2010, NIST HDB MATH FUNCTI