DUAL EQUIVALENCE GRAPHS I: A NEW PARADIGM FOR SCHUR POSITIVITY

被引:24
作者
Assaf, Sami H. [1 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
D O I
10.1017/fms.2015.15
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We make a systematic study of a new combinatorial construction called a dual equivalence graph. We axiomatize these graphs and prove that their generating functions are symmetric and Schur positive. This provides a universal method for establishing the symmetry and Schur positivity of quasisymmetric functions.
引用
收藏
页数:33
相关论文
共 14 条
[1]  
Assaf Sami, 2008, SEM LOTHAR COMBIN, V60
[2]   SPLITTING THE SQUARE OF A SCHUR FUNCTION INTO ITS SYMMETRICAL AND ANTISYMMETRIC PARTS [J].
CARRE, C ;
LECLERC, B .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1995, 4 (03) :201-231
[3]   ON NETTO INVERSION NUMBER OF A SEQUENCE [J].
FOATA, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 19 (01) :236-&
[4]  
Gessel I., 1983, CONT MATH, P289
[5]   A combinatorial formula for the character of the diagonal convariants [J].
Haglund, J ;
Haiman, M ;
Loehr, N ;
Remmel, JB ;
Ulyanov, A .
DUKE MATHEMATICAL JOURNAL, 2005, 126 (02) :195-232
[6]   DUAL EQUIVALENCE WITH APPLICATIONS, INCLUDING A CONJECTURE OF PROCTOR [J].
HAIMAN, MD .
DISCRETE MATHEMATICS, 1992, 99 (1-3) :79-113
[7]  
KASHIWARA M., 1995, SELECTA MATH, V1, P787
[8]   Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras, and unipotent varieties [J].
Lascoux, A ;
Leclerc, B ;
Thibon, JY .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (02) :1041-1068
[9]  
Leclerc B, 2000, ADV STU P M, V28, P155
[10]  
Macdonald I. G., 1995, OXFORD MATH MONOGRAP