EXTENSIONS FOR SOBOLEV MAPPINGS BETWEEN MANIFOLDS

被引:8
作者
BETHUEL, F
DEMENGEL, F
机构
[1] UNIV PARIS 11,NUMER ANAL LAB,F-91405 ORSAY,FRANCE
[2] UNIV PARIS 11,EDP,URA 760,F-91405 ORSAY,FRANCE
[3] UNIV CERGY PONTOISE,F-95806 CERGY,FRANCE
来源
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS | 1995年 / 3卷 / 04期
关键词
D O I
10.1007/BF01187897
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider two compact Riemannian manifolds M and N, such that M has a boundary (but not N). We address the extension problem in the Sobolev class, namely, we investigate the question: for u epsilon W-1-1/p,W-P (partial derivative M,N) is there a map V in W-1/P(M,N) such that V = u on partial derivative M. Various results are given, and an emphasis is put on the special (simple) case N = S-1.
引用
收藏
页码:475 / 491
页数:17
相关论文
共 13 条
[1]   DENSITY OF SMOOTH FUNCTIONS BETWEEN 2 MANIFOLDS IN SOBOLEV SPACES [J].
BETHUEL, F ;
ZHENG, XM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1988, 80 (01) :60-75
[2]   THE APPROXIMATION PROBLEM FOR SOBOLEV MAPS BETWEEN 2 MANIFOLDS [J].
BETHUEL, F .
ACTA MATHEMATICA, 1991, 167 (3-4) :153-206
[3]  
BETHUEL F, CHARACTERIZATION MAP
[4]  
BETHUEL F, IN PRESS NONLINEAR A
[5]  
BETHUEL F, 1990, P NATO WORKSHOP NEMA
[6]  
DEMENGEL F, 1990, CR ACAD SCI I-MATH, V310, P553
[7]  
DEMENGEL F, IN PRESS SOME SPACES
[8]  
Gagliardo E., 1957, REND SEM MAT U PADOV, V27, P284
[9]  
LIONS JL, 1968, PROBLEMES AUX LIMITE, V1
[10]  
SCHOEN R, 1983, J DIFFER GEOM, V18, P253