EIGENVALUE AND EIGENFUNCTION ASYMPTOTICS FOR REGULAR STURM-LIOUVILLE PROBLEMS

被引:73
作者
FULTON, CT [1 ]
PRUESS, SA [1 ]
机构
[1] COLORADO SCH MINES,DEPT MATH,GOLDEN,CO 80401
关键词
D O I
10.1006/jmaa.1994.1429
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain asymptotic formulas for eigenvalues, eigenfunctions, and the reciprocals of the eigenfunction norms for eigenvalue problems associated with the general Sturm-Liouville equation (pu')' + (lambda r - q) u = 0 having regular endpoints. The method is based on a conversion to Liouville Normal Form and an iterative procedure of solving the associated Volterra integral equation, producing an asymptotic expansion of the solution in higher powers of 1/lambda(1/2) as lambda --> infinity. (C) 1994 Academic Press, Inc.
引用
收藏
页码:297 / 340
页数:44
相关论文
共 87 条
[12]  
Buslaev V.S., 1960, SOV MATH DOKL, V1, P451
[13]   INVERSE SPECTRAL THEORY FOR SOME SINGULAR STURM-LIOUVILLE PROBLEMS [J].
CARLSON, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 106 (01) :121-140
[14]   AN INVERSE PROBLEM FOR THE SCHRODINGER-EQUATION WITH A RADIAL POTENTIAL [J].
CHRIST, CS .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 103 (02) :247-259
[15]  
CHUNTSI S, 1960, SOV MATH DOKL, V1, P442
[16]   SOLUTION OF THE INVERSE SPECTRAL PROBLEM FOR AN IMPEDANCE WITH INTEGRABLE DERIVATIVE .2. [J].
COLEMAN, CF ;
MCLAUGHLIN, JR .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (02) :185-212
[17]  
COLEMAN CF, 1993, COMMUN PUR APPL MATH, V46, P145, DOI 10.1002/cpa.3160460203
[18]  
COPE D, 1984, Q J APPL MATH, P373
[19]  
COURANT R, 1953, METHODS MATH PHYSICS, V1
[20]  
Dikii L., 1955, IZV ROSS AKAD NAUK S, V19, P187