EIGENVALUE AND EIGENFUNCTION ASYMPTOTICS FOR REGULAR STURM-LIOUVILLE PROBLEMS

被引:73
作者
FULTON, CT [1 ]
PRUESS, SA [1 ]
机构
[1] COLORADO SCH MINES,DEPT MATH,GOLDEN,CO 80401
关键词
D O I
10.1006/jmaa.1994.1429
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain asymptotic formulas for eigenvalues, eigenfunctions, and the reciprocals of the eigenfunction norms for eigenvalue problems associated with the general Sturm-Liouville equation (pu')' + (lambda r - q) u = 0 having regular endpoints. The method is based on a conversion to Liouville Normal Form and an iterative procedure of solving the associated Volterra integral equation, producing an asymptotic expansion of the solution in higher powers of 1/lambda(1/2) as lambda --> infinity. (C) 1994 Academic Press, Inc.
引用
收藏
页码:297 / 340
页数:44
相关论文
共 87 条
[1]   INVERSE EIGENVALUE PROBLEMS WITH DISCONTINUOUS COEFFICIENTS [J].
ANDERSSON, LE .
INVERSE PROBLEMS, 1988, 4 (02) :353-397
[2]   INVERSE EIGENVALUE PROBLEMS FOR A STURM-LIOUVILLE EQUATION IN IMPEDANCE FORM [J].
ANDERSSON, LE .
INVERSE PROBLEMS, 1988, 4 (04) :929-971
[3]  
[Anonymous], 1971, FUNCT ANAL APPL+, DOI [DOI 10.1007/BF01086739, 10.1007/BF01086739]
[4]  
Apostol T.M., 1957, MATH ANAL
[5]  
ATKINSON FV, 1982, LECT NOTES MATH, V964, P28
[6]   ASYMPTOTICS OF STURM-LIOUVILLE EIGENVALUES FOR PROBLEMS ON A FINITE INTERVAL WITH ONE LIMIT-CIRCLE SINGULARITY .1. [J].
ATKINSON, FV ;
FULTON, CT .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1984, 99 :51-70
[7]  
ATKINSON FV, 1983, ANN MAT PUR APPL, V85, P363
[8]  
ATKINSON FV, 1951, REV TUCUMAN, V8, P71
[10]   Boundary value and expansion problems of ordinary linear differential equations [J].
Birkhoff, George D. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1908, 9 (1-4) :373-395