ERGODIC-THEORY OF EQUILIBRIUM STATES FOR RATIONAL MAPS

被引:85
作者
DENKER, M [1 ]
URBANSKI, M [1 ]
机构
[1] NICHOLAS COPERNICUS UNIV,INST MATH,PL-87100 TORUN,POLAND
关键词
D O I
10.1088/0951-7715/4/1/008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T be a rational map of degree d greater-than-or-equal-to 2 of the Riemann sphere CBAR = C union {infinity}. We develop the theory of equilibrium states for the class of Holder continuous functions closed-integral for which the pressure is larger than sup closed-integral. We show that there exist a unique conformal measure (reference measure) and a unique equilibrium state, which is equivalent to the conformal measure with a positive continuous density. The associated Perron-Frobenius operator acting on the space of continuous functions is almost periodic and we show that the system is exact with respect to the equilibrium measure.
引用
收藏
页码:103 / 134
页数:32
相关论文
共 23 条
[1]   COMPLEX ANALYTIC DYNAMICS ON THE RIEMANN SPHERE [J].
BLANCHARD, P .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 11 (01) :85-141
[2]  
BOWEN R, 1975, LECTURE NOTES MATH, V470
[3]   INVRAIANT SETS UNDER ITERATION OF RATIONAL FUNCTIONS [J].
BROLIN, H .
ARKIV FOR MATEMATIK, 1965, 6 (02) :103-&
[4]  
COURANT R, 1964, GEOMETRISCHE FUNKTIO
[5]  
DENKER M, 1976, LECT NOTES MATH, V527
[6]  
DENKER M, 1990, T AM MATH SOC
[7]  
DEVANEY R, 1985, INTRO CHAOTIC DYNAMI
[8]  
Fatou P., 1919, BULETIN S M F, V47, P161, DOI 10.24033/bsmf.998
[9]  
Fatou P, 1920, B SOC MATH FRANCE, V48, P33
[10]  
FREIRE A, 1983, B SOC BRASIL MAT, V14, P45