Representation of Integers by Near Quadratic Sequences

被引:0
作者
Haddad, Labib [1 ]
Helou, Charles [2 ]
机构
[1] 120 rue Charonne, F-75011 Paris, France
[2] Penn State Univ, Dept Math, University Pk, PA 19063 USA
关键词
sequences; representation functions; quadratic; Erdos-Turan conjecture;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Following a statement of the well-known Erdos-Turan conjecture, Erdos mentioned the following even stronger conjecture: if the n-th term a(n) of a sequence A of positive integers is bounded by alpha n(2), for some positive real constant alpha, then the number of representations of n as a sum of two terms from A is an unbounded function of n. Here we show that if a(n) differs from alpha n(2) (or from a quadratic polynomial with rational coefficients q(n)) by at most o(root logn), then the number of representations function is indeed unbounded.
引用
收藏
页数:10
相关论文
共 21 条
  • [1] Borwein P, 2006, MATH COMPUT, V75, P475, DOI 10.1090/S0025-5718-05-01777-1
  • [2] The analogue of Erdos-Turan conjecture in Zm
    Chen, Yong-Gao
    [J]. JOURNAL OF NUMBER THEORY, 2008, 128 (09) : 2573 - 2581
  • [3] Dirac, 1951, J LOND MATH SOC, V1, P312
  • [4] DOWD M, 1988, SIAM J DISCRETE MATH, V1, P142
  • [5] Erdos P., 1956, C THEOR NOMBR BRUX, P127
  • [6] Erdos P., 1956, J LOND MATH SOC, V31, P67, DOI 10.1112/jlms/s1-31.1.67
  • [7] Erdos P., 1941, J LONDON MATH SOC, P212, DOI [10.1112/jlms/s1-16.4.212, DOI 10.1112/JLMS/S1-16.4.212]
  • [8] Variations on a theme of cassels for additive bases
    Grekos, G.
    Haddad, L.
    Helou, C.
    Pihko, J.
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2006, 2 (02) : 249 - 265
  • [9] The class of Erdos-Turan sets
    Grekos, G
    Haddad, L
    Helou, C
    Pihko, J
    [J]. ACTA ARITHMETICA, 2005, 117 (01) : 81 - 105
  • [10] On the Erdos-Turan conjecture
    Grekos, G
    Haddad, L
    Helou, C
    Pihko, J
    [J]. JOURNAL OF NUMBER THEORY, 2003, 102 (02) : 339 - 352