Zigzag and varicose instabilities of a localized stripe

被引:15
作者
Hirschberg, P. [1 ]
Knobloch, E. [1 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
关键词
D O I
10.1063/1.165932
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A localized stripe solution to a reaction-diffusion equation can lose stability simultaneously to zigzag and varicose perturbations at a codimension-two point. The resulting mode interaction is described by O(2)xZ(2) equivariant amplitude equations. Stationary mixed-mode solutions are found which can undergo instabilities to breathing modes or to patterns which travel along the stripe.
引用
收藏
页码:713 / 721
页数:9
相关论文
共 13 条
[1]  
[Anonymous], 1988, SINGULARITIES GROUPS
[2]   NONLINEAR PROPERTIES OF THERMAL-CONVECTION [J].
BUSSE, FH .
REPORTS ON PROGRESS IN PHYSICS, 1978, 41 (12) :1929-&
[3]  
Buzano E., 1987, ANN MAT PUR APPL, V146, P217
[4]  
DANGELMAYR G, 1986, DYN STABILITY SYSTEM, V1, P160
[5]  
Golubitsky M., 1985, SINGULARITIES GROUPS, VI
[6]  
Guckenheimer J., 1986, DYNAMICAL SYSTEMS BI
[7]   EQUIVARIANT BIFURCATION-ANALYSIS OF LOCALIZED PATTERNS IN EXCITABLE MEDIA [J].
HIRSCHBERG, P ;
KIRK, V ;
KNOBLOCH, E .
PHYSICS LETTERS A, 1992, 172 (03) :141-147
[8]   LOCALIZED PATTERNS IN REACTION-DIFFUSION SYSTEMS [J].
KOGA, S ;
KURAMOTO, Y .
PROGRESS OF THEORETICAL PHYSICS, 1980, 63 (01) :106-121
[9]   NEW TYPES OF WAVES IN SYSTEMS WITH O(2) SYMMETRY [J].
LANDSBERG, AS ;
KNOBLOCH, E .
PHYSICS LETTERS A, 1993, 179 (4-5) :316-324
[10]   PATTERN-FORMATION BY INTERACTING CHEMICAL FRONTS [J].
LEE, KJ ;
MCCORMICK, WD ;
OUYANG, Q ;
SWINNEY, HL .
SCIENCE, 1993, 261 (5118) :192-194