CYCLES THROUGH VERTICES OF LARGE MAXIMUM DEGREE

被引:2
作者
JACKSON, B
机构
[1] Department of Mathematical Sciences, Goldsmiths' College, London
关键词
D O I
10.1002/jgt.3190190204
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a 2-connected graph on n vertices with maximum degree k where n less than or equal to 3k - 2. We show that there is a cycle in G that contains all vertices of degree k. (C) 1995 John Wiley & Sons, Inc.
引用
收藏
页码:157 / 168
页数:12
相关论文
共 10 条
[1]   CYCLES THROUGH SPECIFIED VERTICES [J].
BOLLOBAS, B ;
BRIGHTWELL, G .
COMBINATORICA, 1993, 13 (02) :147-155
[2]   HAMILTON CYCLES IN REGULAR 2-CONNECTED GRAPHS [J].
BONDY, JA ;
KOUIDER, M .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1988, 44 (02) :177-186
[3]   CYCLES CONTAINING ALL VERTICES OF MAXIMUM DEGREE [J].
BROERSMA, HJ ;
VANDENHEUVEL, J ;
JUNG, HA ;
VELDMAN, HJ .
JOURNAL OF GRAPH THEORY, 1993, 17 (03) :373-385
[4]   HAMILTON CYCLES IN REGULAR 2-CONNECTED GRAPHS [J].
JACKSON, B .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1980, 29 (01) :27-46
[5]  
JACKSON B, 1991, DISCRETE MATH, V102, P163
[6]  
SHI RH, 1992, J GRAPH THEOR, V16, P267
[7]   CYCLES CONTAINING MANY VERTICES OF LARGE DEGREE [J].
VELDMAN, HJ .
DISCRETE MATHEMATICS, 1992, 101 (1-3) :319-325
[8]  
Woodall D. R., 1973, Journal of Combinatorial Theory, Series B, V15, P225, DOI 10.1016/0095-8956(73)90038-5
[9]  
Zhu Y., 1985, ANN DISCRETE MATH, V27, P237
[10]  
ZHU Y, 1992, DISCRETE MATH, P229