BOUNDEDNESS FOR SOLUTIONS OF NONLINEAR HILLS EQUATIONS WITH PERIODIC FORCING TERMS VIA MOSER TWIST THEOREM

被引:18
作者
BIN, L
机构
关键词
D O I
10.1016/0022-0396(89)90105-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:304 / 315
页数:12
相关论文
共 50 条
[21]   Quasi-periodic solutions of nonlinear wave equations with quasi-periodic forcing [J].
Zhang, Min ;
Si, Jianguo .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (22) :2185-2215
[22]   UNIFORM ULTIMATE BOUNDEDNESS AND PERIODIC SOLUTIONS TO NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS [J].
Jiabu Dishen .
AnnalsofDifferentialEquations, 2013, 29 (01) :1-6
[23]   AN APPLICATION OF MOSER'S TWIST THEOREM TO SUPERLINEAR IMPULSIVE DIFFERENTIAL EQUATIONS [J].
Niu, Yanmin ;
Li, Xiong .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (01) :431-445
[24]   Applications of the Moser’s Twist Theorem to Some Impulsive Differential Equations [J].
Lu Chen .
Qualitative Theory of Dynamical Systems, 2020, 19
[25]   Applications of the Moser's Twist Theorem to Some Impulsive Differential Equations [J].
Chen, Lu .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2020, 19 (02)
[26]   Asymptotic behavior of interface solutions to semilinear parabolic equations with nonlinear forcing terms [J].
De Cave, Linda Maria ;
Strani, Marta .
RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2018, 9 (01) :85-131
[27]   Nash-Moser theorem and nonlinear hyperbolic equations [J].
Di Flaviano, M .
BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2000, 3A (03) :327-330
[28]   ON BOUNDEDNESS OF SOLUTIONS OF NONLINEAR INTEGRAL EQUATIONS [J].
SANDBERG, IW .
BELL SYSTEM TECHNICAL JOURNAL, 1965, 44 (03) :439-+
[29]   Boundedness of solutions for nonlinear differential equations [J].
Yang, XJ .
MATHEMATICAL AND COMPUTER MODELLING, 2003, 37 (7-8) :747-755
[30]   Boundedness of solutions of nonlinear differential equations [J].
Liu, B ;
Zanolin, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 144 (01) :66-98