ASYMPTOTIC EXPANSION OF SOLUTION OF GENERAL BVP WITH INITIAL JUMPS FOR HIGHER-ORDER SINGULARLY PERTURBED INTEGRO-DIFFERENTIAL EQUATION

被引:4
作者
Dauylbayev, M. K. [1 ,4 ]
Atakhan, N. [2 ,4 ]
Mirzakulova, A. E. [3 ]
机构
[1] Al Farabi Kazakh Natl Univ, Alma Ata, Kazakhstan
[2] Kazakh State Womens Teacher Training Univ, Alma Ata, Kazakhstan
[3] Abay Kazakh Natl Pedag Univ, Alma Ata, Kazakhstan
[4] Inst Informat & Computat Technol, Alma Ata, Kazakhstan
来源
NEWS OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN-SERIES PHYSICO-MATHEMATICAL | 2018年 / 6卷 / 322期
关键词
singular perturbation; the integro-differential equation; a small parameter; asymptotic expansion; the initial jump; the boundary layer;
D O I
10.32014/2018.2518-1726.14
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article we constructed an asymptotic expansion of the solution undivided boundary value problem for singularly perturbed integro-differential equations with an initial jump phenomenon m - th order. We obtain the theorem about estimation of the remainder term's asymptotic with any degree of accuracy in the smallparameter.
引用
收藏
页码:28 / 36
页数:9
相关论文
共 10 条