ON A WEYL-TYPE THEOREM FOR HIGHER-ORDER LAGRANGIANS

被引:0
作者
CASTAGNINO, M
DOMENECH, G
NORIEGA, RJ
SCHIFINI, CG
机构
[1] NATL UNIV ROSARIO,CONSEJO NACL INVEST CIENT & TECN,INST FIS ROSARIO,RA-2000 ROSARIO,ARGENTINA
[2] UNIV BUENOS AIRES,FAC CIENCIAS EXACTAS & NAT,DEPT MATEMAT,BUENOS AIRES,ARGENTINA
关键词
D O I
10.1063/1.527447
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1854 / 1857
页数:4
相关论文
共 50 条
  • [2] A Weyl-type equidistribution theorem in finite characteristic
    Bergelson, V.
    Leibman, A.
    ADVANCES IN MATHEMATICS, 2016, 289 : 928 - 950
  • [3] LAGRANGIANS WITH HIGHER-ORDER DERIVATIVES
    RIAHI, F
    AMERICAN JOURNAL OF PHYSICS, 1972, 40 (03) : 386 - &
  • [4] CHARACTERISTIC FUNCTIONS AND HIGHER-ORDER LAGRANGIANS
    BUCHDAHL, HA
    JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (05) : 1122 - 1126
  • [5] Canonical Quantization of Higher-Order Lagrangians
    Nawafleh, Khaled I.
    JOURNAL OF APPLIED MATHEMATICS, 2011,
  • [6] Gauge transformations for higher-order Lagrangians
    Gracia, X
    Pons, JM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (24): : 7181 - 7196
  • [7] Higher-Order Weyl Semimetals
    Wang, Hai-Xiao
    Lin, Zhi-Kang
    Jiang, Bin
    Guo, Guang-Yu
    Jiang, Jian-Hua
    PHYSICAL REVIEW LETTERS, 2020, 125 (14)
  • [8] Higher-Order Weyl Semimetals
    Ghorashi, Sayed Ali Akbar
    Li, Tianhe
    Hughes, Taylor L.
    PHYSICAL REVIEW LETTERS, 2020, 125 (26)
  • [9] Discrete variational principles for higher-order Lagrangians
    Baleanu, D
    Jarad, F
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2005, 120 (09): : 931 - 938
  • [10] SYMMETRIES AND ALTERNATIVE LAGRANGIANS IN HIGHER-ORDER MECHANICS
    SARLET, W
    PHYSICS LETTERS A, 1985, 108 (01) : 14 - 18