Results on the associated classical orthogonal polynomials

被引:18
作者
Lewanowicz, S [1 ]
机构
[1] UNIV WROCLAW, INST COMP SCI, PL-51151 WROCLAW, POLAND
关键词
classical orthogonal polynomials; associated polynomials of higher order; fourth-order differential equation; connection coefficients; recurrence relations;
D O I
10.1016/0377-0427(95)00112-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {P-k(x)} be any system of the classical orthogonal polynomials, and let {P-k(x;c)} be the corresponding associated polynomials of order c (c is an element of N). Second-order recurrence-relation (in k) is given for the connection coefficient a(no1,k)((c)) in P-n-1(x;c) = (k=0)Sigma(n-1) a(n-1,k)((c))P-k((x)). This result is obtained thanks to a new explicit form of the fourth-order differential equation satisfied by P-n-1((.);c).
引用
收藏
页码:215 / 231
页数:17
相关论文
共 18 条
[1]  
ALSALAM WA, 1990, NATO ADV SCI I C-MAT, V294, P1
[2]   ASSOCIATED LAGUERRE AND HERMITE-POLYNOMIALS [J].
ASKEY, R ;
WIMP, J .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1984, 96 :15-37
[3]  
CHAR BW, 1991, MAPLE 5 LANGUAGE REF
[4]  
Chihara TS., 1978, INTRO ORTHOGONAL POL
[5]   QUICK CONSTRUCTION OF RECURRENCE RELATIONS FOR THE JACOBI COEFFICIENTS [J].
LEWANOWICZ, S .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1992, 43 (03) :355-372
[6]   RESULTS ON THE ASSOCIATED JACOBI AND GEGENBAUER POLYNOMIALS [J].
LEWANOWICZ, S .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1993, 49 (1-3) :137-143
[7]  
LEWANOWICZ S, 1986, MATH COMPUT, V47, P669, DOI 10.1090/S0025-5718-1986-0856711-8
[8]   CLASSICAL ORTHOGONAL POLYNOMIALS - A FUNCTIONAL-APPROACH [J].
MARCELLAN, F ;
BRANQUINHO, A ;
PETRONILHO, J .
ACTA APPLICANDAE MATHEMATICAE, 1994, 34 (03) :283-303
[9]  
PASZKOWSKI S, 1984, ANO136 PUBL
[10]   RECURRENCE RELATIONS FOR CONNECTION COEFFICIENTS BETWEEN 2 FAMILIES OF ORTHOGONAL POLYNOMIALS [J].
RONVEAUX, A ;
ZARZO, A ;
GODOY, E .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 62 (01) :67-73