POSSIBLE ROLE FOR CALMODULIN AND THE CA2+/CALMODULIN-DEPENDENT PROTEIN KINASE-II IN POSTSYNAPTIC NEUROTRANSMISSION

被引:29
|
作者
SIEKEVITZ, P
机构
[1] Rockefeller University, New York
关键词
D O I
10.1073/pnas.88.12.5374
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The theory presented here is based on results from in vitro experiments and deals with three proteins in the postsynaptic density/membrane - namely, calmodulin, the Ca2+/calmodulin-dependent protein kinase, and the voltage-dependent Ca2+ channel. It is visualized that, in vivo in the polarized state of the membrane, calmodulin is bound to the kinase; upon depolarization of the membrane and the intrusion of Ca2+, Ca2+-bound calmodulin activates the autophosphorylation of the kinase. Calmodulin is visualized as having less affinity for the phosphorylated form of the kinase and is translocated to the voltage-dependent Ca2+ channel. There, with its bound Ca2+, it acts as a Ca2+ sensor, to close off the Ca2+ channel of the depolarized membrane. At the same time, it is thought that the configuration of the kinase is altered by its phosphorylated states; by interacting with Na+ and K+ channels, it alters the electrical properties of the membrane to regain the polarized state. Calmodulin is moved to the unphosphorylated kinase to complete the cycle, allowing the voltage-dependent Ca2+ channel to be receptive to Ca2+ flux upon the next cycle of depolarization. Thus, the theory tries to explain (i) why calmodulin and the kinase reside at the postsynaptic density/membrane site, and (ii) what function autophosphorylation of the kinase may play.
引用
收藏
页码:5374 / 5378
页数:5
相关论文
共 50 条