GEOMETRY OF V-FUNCTIONS AND THE LIAPUNOV STABILITY THEORY

被引:1
作者
GALPERIN, EA
SKOWRONSKI, JM
机构
[1] UNIV QUEENSLAND, DEPT MATH, ST LUCIA, QLD 4067, AUSTRALIA
[2] UNIV BRITISH COLUMBIA, VANCOUVER V6T 1W5, BC, CANADA
关键词
CONTROL SYSTEMS; OPTIMAL - Theory - SYSTEM STABILITY - Lyapunov Methods;
D O I
10.1016/0362-546X(87)90097-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Geometric properties of V-functions are studied, and the application of such functions to nonlinear differential equations with control for a dynamical system is considered. A theorem is proved that provides a framework for quantitative design and investigation of motions. The results allow direct control applications. The application is made to a perturbation equation where classical Liapunov theorems follow as a special case, thereby the investigation of locally unstable but eta -stable systems is made possible.
引用
收藏
页码:183 / 197
页数:15
相关论文
共 22 条
[1]  
AIZERMAN MA, 1963, ABSOLUTE STABILITY C
[2]  
CESARI L, 1959, ASYMPTOTIC BEHAVIOR
[3]  
GALPERIN EA, 1976, 1976 P IEEE C DEC CO, P1299
[4]  
GALPERIN EA, 1963, APPL MATH MECH PMM, V27, P1521
[5]  
GALPERIN EA, IN PRESS PLAYABLE AS
[6]  
GALPERIN EA, 1977, P IEEE C DECISION CO, V1, P444
[7]   UNCERTAIN DYNAMICAL-SYSTEMS - LYAPUNOV MIN-MAX APPROACH [J].
GUTMAN, S .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1979, 24 (03) :437-443
[8]   EXPONENTIAL OBSERVERS FOR NONLINEAR DYNAMIC-SYSTEMS [J].
KOU, SR ;
ELLIOTT, DL ;
TARN, TJ .
INFORMATION AND CONTROL, 1975, 29 (03) :204-216
[9]  
Krasovskii NN, 1963, STABILITY MOTION
[10]  
La Salle J., 1961, STABILITY LIAPUNOVS