TIME-SERIES COUNT DATA REGRESSION

被引:29
作者
BRANNAS, K [1 ]
JOHANSSON, P [1 ]
机构
[1] UMEA UNIV,DEPT ECON,S-90187 UMEA,SWEDEN
基金
瑞典研究理事会;
关键词
POISSON REGRESSION; OVERDISPERSION; SERIAL CORRELATION; INFERENCE; MAXIMUM LIKELIHOOD; LEAST SQUARES; METHOD OF MOMENTS;
D O I
10.1080/03610929408831424
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The count data model studied in the paper extends the Poisson model by allowing for overdispersion and serial correlation. Alternative approaches to estimate nuisance parameters, required for the correction of the Poisson maximum likelihood covariance matrix estimator and for a quasi-likelihood estimator, are studied. The estimators are evaluated by finite sample Monte Carlo experimentation. It is found that the Poisson maximum likelihood estimator with corrected covariance matrix estimators provide reliable inferences for longer time series. Overdispersion test statistics are wellbehaved, while conventional portmanteau statistics for white noise have too large sizes. Two empirical illustrations are included.
引用
收藏
页码:2907 / 2925
页数:19
相关论文
共 23 条
[1]  
Box G.E.P., 1970, J AM STAT ASS
[2]   LIMITED DEPENDENT POISSON REGRESSION [J].
BRANNAS, K .
STATISTICIAN, 1992, 41 (04) :413-423
[3]  
BRANNAS K, 1992, 2ND P WURZB UM C STA
[4]  
BRANNAS K, 1992, J STAT COMPUT SIM, V41, P229
[6]  
CAMERON AC, 1986, J APPLIED ECONOMETRI, V1, P29, DOI DOI 10.1002/JAE.3950010104
[7]  
COX DR, 1981, SCAND J STAT, V8, P93
[8]   SOME REMARKS ON OVERDISPERSION [J].
COX, DR .
BIOMETRIKA, 1983, 70 (01) :269-274
[9]   TESTS FOR DETECTING OVERDISPERSION IN POISSON REGRESSION-MODELS [J].
DEAN, C ;
LAWLESS, JF .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (406) :467-472
[10]  
FIRTH D, 1993, 49TH SESS INT STAT I