POLYNOMIAL RELATIONS IN THE HEISENBERG ALGEBRA

被引:9
作者
FLEURY, N
TURBINER, A
机构
[1] UNIV LOUIS PASTEUR, F-67037 STRASBOURG, FRANCE
[2] Univ Nacl Autonoma Mexico, INST FIS, 01000 MEXICO CITY, DF, MEXICO
关键词
D O I
10.1063/1.530733
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Polynomial relations between the generators of the classical and quantum Heisenberg algebras are presented. Some of those relations can have the meaning of the formulas of the normal ordering for the creation/annihilation operators which occur in the method of the second quantization. Polynomial relations of a special type invariant under quantization and q deformation are discovered.
引用
收藏
页码:6144 / 6149
页数:6
相关论文
共 10 条
[1]  
BEREZIN FA, 1966, METHOD 2ND QUANTIZAT
[2]  
Iachello F., 1987, INTERACTING BOSON MO
[3]   QUASIFINITE HIGHEST WEIGHT MODULES OVER THE LIE-ALGEBRA OF DIFFERENTIAL-OPERATORS ON THE CIRCLE [J].
KAC, V ;
RADUL, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 157 (03) :429-457
[4]  
OGIEVETSKY O, 1991, CERNTH621291 PREPR
[5]  
POST G, 1993, MEMORANDUM U TWENTE, V1143
[6]   OPERATOR IDENTITIES, REPRESENTATIONS OF ALGEBRAS AND THE PROBLEM OF NORMAL ORDERING [J].
TURBINER, A ;
POST, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (02) :L9-L13
[7]  
TURBINER AV, 1994, CONT MATH, V160, P263, DOI DOI 10.FUNCT-AN/9301001
[8]  
Wess J., 1991, Nuclear Physics B, Proceedings Supplements, V18B, P302, DOI 10.1016/0920-5632(91)90143-3
[9]  
WISKOV O, 1977, ACTA SCI MATH, V39, P27