LOCALIZATION IN THE GROUND-STATE OF THE ISING-MODEL WITH A RANDOM TRANSVERSE FIELD

被引:31
|
作者
CAMPANINO, M
KLEIN, A
PEREZ, JF
机构
[1] UNIV SAO PAULO, INST FIS, BR-01498 SAO PAULO, BRAZIL
[2] UNIV CALIF IRVINE, DEPT MATH, IRVINE, CA 92717 USA
关键词
D O I
10.1007/BF02104118
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the zero-temperature behavior of the Ising model in the presence of a random transverse field. The Hamiltonian is given by GRAPHICS where J > 0, x, y-epsilon-Z(d), sigma-1, sigma-3 are the usual Pauli spin 1/2 matrices, and h = {h(x), x-epsilon-Z(d)} are independent identically distributed random variables. We consider the ground state correlation function <sigma-3-(x)-sigma-3-(y)> and prove: 1. Let d be arbitrary. For any m > 0 and J sufficiently small we have, for almost every choice of the random transverse field h and every x-epsilon-Z(d), that <sigma-3-(x)-sigma-3-(y)> lesser-than-or-equal-to C(x,h)e-m\x-y\ for all y-epsilon-Z(d) with C(x,h) < infinity. 2. Let d greater-than-or-equal-to 2. If J is sufficiently large, then, for almost every choice of the random transverse field h, the model exhibits long range order, i.e., GRAPHICS for any x-epsilon-Z(d).
引用
收藏
页码:499 / 515
页数:17
相关论文
共 50 条