USING AN EXPERT SYSTEM TO IDENTIFY A WELL-TEST-INTERPRETATION MODEL

被引:6
|
作者
ALKAABI, AAU
MCVAY, DA
LEE, WJ
机构
来源
JOURNAL OF PETROLEUM TECHNOLOGY | 1990年 / 42卷 / 05期
关键词
D O I
10.2118/18158-PA
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
引用
收藏
页码:654 / 661
页数:8
相关论文
共 50 条
  • [2] USING ARTIFICIAL NEURAL NETS TO IDENTIFY THE WELL-TEST INTERPRETATION MODEL
    ALKAABI, AAU
    LEE, WJ
    SPE FORMATION EVALUATION, 1993, 8 (03): : 233 - 240
  • [3] Application of neural networks and expert system in the interpretation of well test
    Xi'an Petroleum Inst, Xi'an, China
    Xi'an Shiyou Xueyuan Xuebao, 2 (3pp):
  • [4] DISCUSSION OF USING ARTIFICIAL NEURAL NETS TO IDENTIFY THE WELL-TEST INTERPRETATION MODEL
    YEUNG, KC
    CHAKRABARTY, C
    WU, S
    SPE FORMATION EVALUATION, 1994, 9 (03): : 237 - 238
  • [5] DISCUSSION OF USING ARTIFICIAL NEURAL NETS TO IDENTIFY THE WELL-TEST INTERPRETATION MODEL - REPLY
    ALKAABI, AU
    LEE, WJ
    SPE FORMATION EVALUATION, 1994, 9 (03): : 238 - 238
  • [6] Interpretation of Pumping Test with Radial Collector Well Using a Reservoir Model
    Appiah-Adjei, Emmanuel Kwame
    Shu, Longcang
    Adjei, Kwaku Amaning
    Lu, Chengpeng
    Deng, Mingjiang
    JOURNAL OF HYDROLOGIC ENGINEERING, 2012, 17 (12) : 1397 - 1407
  • [7] Selecting a reservoir model for well test interpretation
    S.A. Holditch & Associates, College Station, United States
    Pet Eng Int, 12 (83, 85-88):
  • [8] A parallel approach to identifying the Well-Test Interpretation model using a neurocomputer
    May, EA
    Dagli, CH
    APPLICATIONS AND SCIENCE OF ARTIFICIAL NEURAL NETWORKS II, 1996, 2760 : 646 - 656
  • [9] The influence of an expert system for test ordering and interpretation on laboratory investigations
    Smith, BJ
    McNeely, MDD
    CLINICAL CHEMISTRY, 1999, 45 (08) : 1168 - 1175
  • [10] Automatic reservoir model identification using syntactic pattern recognition in well test interpretation
    Yang, Sihan
    Liu, Qiguo
    Li, Xiaoping
    Xu, Youjie
    PETROLEUM SCIENCE AND TECHNOLOGY, 2024, 42 (08) : 993 - 1017