Solvability and Number of Roots of Bi-Quadratic Equations over p-adic Fields

被引:0
作者
Saburov, M. [1 ]
Ahmad, M. A. K. [1 ]
机构
[1] Int Islamic Univ Malaysia, Dept Computat & Theoret Sci Kulliyyah Sci, Gombak, Malaysia
来源
MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES | 2016年 / 10卷
关键词
Bi-quadratic equation; p-adic number; solvability criterion;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Unlike the real number field R, a bi-quadratic equation x(4) + 1 = 0 is solvable over some p-adic number fields Q(p), say p = 17, 41, .... Therefore, it is of independent interest to provide a solvability criterion for the bi-quadratic equation over p-adic number fields Qp. In this paper, we provide solvability criteria for the bi-quadratic equation x(4) + ax 2 = b over domains Z*(p), Z(p) \ Z*(p), Q(p) \ Z(p), Q(p), where p > 2. Moreover, we also provide the number of roots of the bi-quadratic equation over the mentioned domains.
引用
收藏
页码:15 / 35
页数:21
相关论文
共 9 条
[1]  
Borevich ZI., 1986, NUMBER THEORY
[2]   THE p-ADIC POTTS MODEL ON THE CAYLEY TREE OF ORDER THREE [J].
Mukhamedov, F. ;
Akin, H. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2013, 176 (03) :1267-1279
[3]   Solvability of cubic equations in p-ADIC integers (p > 3) [J].
Mukhamedov, F. M. ;
Omirov, B. A. ;
Saburov, M. Kh. ;
Masutova, K. K. .
SIBERIAN MATHEMATICAL JOURNAL, 2013, 54 (03) :501-516
[4]   On cubic equations over p-adic fields [J].
Mukhamedov, Farrukh ;
Omirov, Bakhrom ;
Saburov, Mansoor .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2014, 10 (05) :1171-1190
[5]   Phase transitions for p-adic Potts model on the Cayley tree of order three [J].
Mukhamedov, Farrukh ;
Akin, Hasan .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
[6]   On equation χq = a over Qp [J].
Mukhamedov, Farrukh ;
Saburov, Mansoor .
JOURNAL OF NUMBER THEORY, 2013, 133 (01) :55-58
[7]  
ROSEN K., 2011, ELEMENTARY NUMBER TH
[8]   Solvability of Cubic Equations over Q3 [J].
Saburov, Mansoor ;
Ahmad, Mohd Ali Khameini .
SAINS MALAYSIANA, 2015, 44 (04) :635-641
[9]   Solvability Criteria for Cubic Equations over Z2* [J].
Saburov, Mansoor ;
Ahmad, Mohd Ali Khameini .
PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES, 2014, 1602 :792-797