Ulam-Hyers stabilities of a generalized composite functional equation in non-Archimedean spaces

被引:0
作者
Narasimman, Pasupathi [1 ]
Rassias, John Michael [2 ]
机构
[1] Thiruvalluvar Univ, Dept Math, Coll Arts & Sci, Tirupattur 635901, Tamil Nadu, India
[2] Natl & Capodistrian Univ Athens, Sect Math & Informat, Pedag Dept EE, 4 Agamemnonos Str, Athens 15342, Attikis, Greece
关键词
Composite functional equation; non-Archimedean space; fixed point method; Hyers-Ulam stability;
D O I
10.1515/apam-2016-0023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a new generalized composite functional equation and prove its Hyers-Ulam-Rassias stability, Ulam-Gavruta-Rassias stability and Ulam-J. Rassias stability in non-Archimedean normed spaces using a fixed point method.
引用
收藏
页码:249 / 257
页数:9
相关论文
共 19 条
[1]   THE STABILITY OF CERTAIN FUNCTIONAL-EQUATIONS [J].
BAKER, JA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (03) :729-732
[2]   ULAM'S TYPE STABILITY OF A FUNCTIONAL EQUATION DERIVING FROM QUADRATIC AND ADDITIVE FUNCTIONS [J].
Bodaghi, Abasalt ;
Kim, Sang Og .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2015, 9 (01) :73-84
[3]   Stability of a Mixed Type Additive and Quartic Functional Equation [J].
Bodaghi, Abasalt .
FILOMAT, 2014, 28 (08) :1629-1640
[4]   A Fixed Points Approach to stability of the Pexider Equation [J].
Bouikhalene, Belaid ;
Elciorachi, Elhoucien ;
Rassias, John Michael .
TBILISI MATHEMATICAL JOURNAL, 2014, 7 (02) :95-110
[5]   A FIXED POINT THEOREM OF ALTERNATIVE FOR CONTRACTIONS ON A GENERALIZED COMPLETE METRIC SPACE [J].
DIAZ, JB ;
MARGOLIS, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 74 (02) :305-&
[6]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[7]  
Kenary HA, 2013, B IRAN MATH SOC, V39, P383
[8]  
Kenary HA, 2011, INT J NONLINEAR ANAL, V2, P92
[9]   On the stability of the additive Cauchy functional equation in random normed spaces [J].
Mihet, Dorel ;
Radu, Viorel .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (01) :567-572
[10]   ON APPROXIMATION OF APPROXIMATELY LINEAR MAPPINGS BY LINEAR MAPPINGS [J].
RASSIAS, JM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1982, 46 (01) :126-130