NUMERICAL ALGORITHMS FOR SOLVING OF DIRECT AND INVERSE PROBLEMS IN EPIDEMIOLOGY

被引:0
|
作者
Ilyin, A. I. [1 ]
Kabanikhin, S. I. [2 ]
Krivorotko, O. I. [2 ]
Voronov, D. A. [2 ]
Kashtanova, V. N. [3 ]
机构
[1] Joint Stock Co Sci Ctr Antiinfect Drugs, 75V Al Farabi Ave, Alma Ata, Kazakhstan
[2] Inst Computat Math & Math Geophys SB RAS, Novosibirsk 630090, Russia
[3] Novosibirsk State Univ, Novosibirsk 630090, Russia
关键词
inverse problem; epidemiology; ordinary differential equation system; Nelder-Mead algorithm; Tuberculosis parameter identification;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of parameter identification for mathematical model of Tuberculosis spread using additional information about susceptible, latent infectious, infected and non-infected individuals is numerically investigated. The inverse problem is numerically solved by the Nelder-Mead algorithm. It is shown that Nelder-Mead method allows one to determine eight parameters of above model, namely transmissibility parameter, rate of Tuberculosis epidemics, mortality rate of population due to Tuberculosis, the probability of infection propagation, etc., with accuracy of 10(-13) during 251 iterations (10 seconds using AMD A10-5750M APU 2.50 GHz).
引用
收藏
页码:C90 / C96
页数:7
相关论文
共 50 条
  • [31] Numerical algorithms for inverse Sturm-Liouville problems
    Jiang, Xiaoying
    Li, Xiaowen
    Xu, Xiang
    NUMERICAL ALGORITHMS, 2022, 89 (03) : 1287 - 1309
  • [32] Numerical simulation of inverse geochemistry problems by regularizing algorithms
    Temirbekov, Nurlan
    Imangaliyev, Yernar
    Baigereyev, Dossan
    Temirbekova, Laura
    Nurmangaliyeva, Maya
    COGENT ENGINEERING, 2022, 9 (01):
  • [33] IMPORTANCE OF NUMERICAL ALGORITHMS FOR SOLVING ECONOMIC OPTIMIZATION PROBLEMS
    LIVESEY, DA
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1974, 5 (05) : 435 - 451
  • [34] Numerical algorithms for solving elliptic-parabolic problems
    Ciegas, R
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, 2004, : 232 - 238
  • [35] Optimum design of three-dimensional blades by combination of numerical methods for solving direct and inverse problems
    Wang, Zhengming
    Jia, Xicheng
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2000, 21 (05): : 567 - 569
  • [36] On an Iterative Method of Solving Direct and Inverse Problems for Parabolic Equations
    Boykov, I. V.
    Ryazantsev, V. A.
    TECHNICAL PHYSICS, 2023, 68 (09) : 250 - 263
  • [37] Multilevel Parallelization: Grid Methods for Solving Direct and Inverse Problems
    Titarenko, Sofya S.
    Kulikov, Igor M.
    Chernykh, Igor G.
    Shishlenin, Maxim A.
    Krivorot'ko, Olga I.
    Voronov, Dmitry A.
    Hildyard, Mark
    SUPERCOMPUTING, RUSCDAYS 2016, 2016, 687 : 118 - 131
  • [38] The method of fundamental solutions for solving direct and inverse Signorini problems
    Karageorghis, A.
    Lesnic, D.
    Marin, L.
    COMPUTERS & STRUCTURES, 2015, 151 : 11 - 19
  • [39] A direct method for solving inverse Sturm-Liouville problems*
    Kravchenko, Vladislav V.
    Torba, Sergii M.
    INVERSE PROBLEMS, 2021, 37 (01)
  • [40] On an Iterative Method of Solving Direct and Inverse Problems for Parabolic Equations
    I. V. Boykov
    V. A. Ryazantsev
    Technical Physics, 2023, 68 : 250 - 263