NONPARAMETRIC SPLINE REGRESSION WITH PRIOR INFORMATION

被引:17
作者
ANSLEY, CF [1 ]
KOHN, R [1 ]
WONG, CM [1 ]
机构
[1] UNIV NEW S WALES,AUSTRALIAN GRAD SCH MANAGEMENT,KENSINGTON,NSW 2033,AUSTRALIA
关键词
BAYESIAN CONFIDENCE INTERVAL; GENERALIZED CROSS-VALIDATION; DIFFERENTIAL EQUATION; EQUALITY CONSTRAINTS; FILTERING; MAXIMUM LIKELIHOOD; PENALIZED LEAST SQUARES; PERIODIC SPLINE; SPLINE SMOOTHING; STATE SPACE MODEL;
D O I
10.2307/2336758
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
By using prior information about the regression curve we propose new nonparametric regression estimates, We incorporate two types of information. First, we suppose that the regression curve is similar in shape to a family of parametric curves characterized as the solution to a linear differential equation. The regression curve is estimated by penalized least squares with the differential operator defining the smoothness penalty. We discuss in particular growth and decay curves and take a time transformation to obtain a tractable solution. The second type of prior information is linear equality constraints. We estimate unknown parameters by generalized cross-validation or maximum likelihood and obtain efficient O(n) algorithms to compute the estimate of the regression curve and the cross-validation and maximum likelihood criterion functions.
引用
收藏
页码:75 / 88
页数:14
相关论文
共 50 条
  • [21] Nonparametric regression estimation using penalized least squares
    Kohler, M
    Krzyzak, A
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) : 3054 - 3058
  • [22] Right-Censored Nonparametric Regression: A Comparative Simulation Study
    Aydin, Dursun
    Yilmaz, Ersin
    [J]. TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS, 2016, 5 (04): : 446 - 450
  • [23] Switching nonparametric regression models for multi-curve data
    De Souza, Camila P. E.
    Heckman, Nancy E.
    Xu, Fan
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2017, 45 (04): : 442 - 460
  • [24] Nonparametric regression on hidden Φ-mixing variables: Identifiability and consistency of a pseudo-likelihood based estimation procedure
    Dumont, Thierry
    Le Corff, Sylvain
    [J]. BERNOULLI, 2017, 23 (02) : 990 - 1021
  • [25] PRIOR: Personalized Prior for Reactivating the Information Overlooked in Federated Learning
    Shi, Mingjia
    Zhou, Yuhao
    Wang, Kai
    Zhang, Huaizheng
    Huang, Shudong
    Ye, Qing
    Lv, Jiangcheng
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [26] On algorithms for ordinary least squares regression spline fitting: A comparative study
    Lee, TCM
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2002, 72 (08) : 647 - 663
  • [27] Electricity consumption prediction with functional linear regression using spline estimators
    Antoch, Jaromir
    Prchal, Lubos
    De Rosa, Maria Rosaria
    Sarda, Pascal
    [J]. JOURNAL OF APPLIED STATISTICS, 2010, 37 (12) : 2027 - 2041
  • [28] BI-RESPONSE TRUNCATED SPLINE NONPARAMETRIC REGRESSION WITH OPTIMAL KNOT POINT SELECTION USING GENERALIZED CROSS-VALIDATION IN DIABETES MELLITUS PATIENT'S BLOOD SUGAR LEVELS
    Sifriyani
    Sari, Ar Rum Mia
    Dani, Andrea Tri Rian
    Jalaluddin, Syatirah
    [J]. COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2023,
  • [29] A nonparametric empirical Bayes approach to large-scale multivariate regression
    Wang, Yihe
    Zhao, Sihai Dave
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 156
  • [30] Smoothing parameter selection methods for nonparametric regression with spatially correlated errors
    Francisco-Fernandez, M
    Opsomer, JD
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2005, 33 (02): : 279 - 295