Design of inhibitors of the HIV-1 integrase core domain using virtual screening

被引:2
|
作者
Regon, Preetom [1 ]
Gogoi, Dhrubajyoti [2 ]
Rai, Ashok Kumar [1 ]
Bordoloi, Manabjyoti [3 ]
Bezbaruah, Rajib Lochan [2 ]
机构
[1] Dibrugarh Univ, Ctr Bioinformat Studies, Dibrugarh, Assam, India
[2] CSIR North East Inst Sci & Technol CSIR, Div Biotechnol, DBT Bioinformat Infrastruct Facil, Jorhat, Assam, India
[3] CSIR North East Inst Sci & Technol CSIR, Nat Prod Chem Div, Jorhat, Assam, India
关键词
HIV-1; integrase; Virtual screening; Elvitegravir; docking; ADME;
D O I
10.6026/97320630010076
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Acquired immunodeficiency syndrome (AIDS) is a disease of the human immune system caused by the human immunodeficiency virus (HIV). The integrase (IN) enzyme of HIV interacts with several cellular and viral proteins during the integration process. Thus, it represents an appropriate target for antiretroviral drugs (ARVs). We performed virtual screening of database compounds and designed analogues using Elvitegravir (EVG) as a standard compound. The 378 screened compounds were retrieved from ZINC, ChemSpider, PubChem, and ChemBank Chemical Databases based on chemical similarity and literature searches related to the structure of EVG. The Physiochemical properties, Bioactivity, Toxicity and Absorption, Distribution, Metabolism and Excretion of Molecules (ADME) of these compounds were predicted and docking Experiments were conducted using Molegro Virtual Docker software. The docking and ADME suggested very significant results in regard to EVG. The MolDock and Rerank scores were used to analyze the results. The compounds ZINC26507991 (-84.22), Analogue 9 (-68.49), ZINC20731658 (-66.79), ZINC00210363 (-43.44) showed better binding orientation with IN receptor model with respect to EVG (182.52). The ZINC26507991 has showed significant ADME result.
引用
收藏
页码:76 / 80
页数:5
相关论文
共 50 条
  • [31] HYDROXYLATED AROMATIC INHIBITORS OF HIV-1 INTEGRASE
    BURKE, TR
    FESEN, MR
    MAZUMDER, A
    WANG, J
    CAROTHERS, AM
    GRUNBERGER, D
    DRISCOLL, J
    KOHN, K
    POMMIER, Y
    JOURNAL OF MEDICINAL CHEMISTRY, 1995, 38 (21) : 4171 - 4178
  • [32] Development of a receptor model for efficient in silico screening of HIV-1 integrase inhibitors
    Quevedo, Mario A.
    Ribone, Sergio R.
    Brinon, Margarita C.
    Dehaen, Wim
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2014, 52 : 82 - 90
  • [33] Discovery of novel HIV-1 integrase inhibitors
    Hong, HX
    Neamati, N
    Wang, SM
    Nicklaus, M
    Pommier, Y
    Milne, GWA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1996, 212 : 22 - MEDI
  • [34] Styrylquinazoline derivatives as HIV-1 integrase inhibitors
    Lee, JY
    Park, JH
    Lee, SJ
    Park, H
    Lee, YS
    ARCHIV DER PHARMAZIE, 2002, 335 (06) : 277 - 282
  • [35] Virtual screening studies on HIV-1 reverse transcriptase inhibitors to design potent leads
    Vadivelan, S.
    Deeksha, T. N.
    Arun, S.
    Machiraju, Pavan Kumar
    Gundla, Rambabu
    Sinha, Barij Nayan
    Jagarlapudi, Sarma A. R. P.
    EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2011, 46 (03) : 851 - 859
  • [36] Strategies for identification of HIV-1 integrase inhibitors
    Ramcharan, Joseph
    Skalka, Anna Marie
    FUTURE VIROLOGY, 2006, 1 (06) : 717 - 731
  • [37] Integrase inhibitors in the treatment of HIV-1 infection
    Powderly, William G.
    JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2010, 65 (12) : 2485 - 2488
  • [38] HIV-1 Integrase Strand Transfer Inhibitors
    Johns, Brian A.
    ANNUAL REPORTS IN MEDICINAL CHEMISTRY, VOL 45, 2010, 45 : 263 - +
  • [39] Clinical progress of HIV-1 integrase inhibitors
    Al-Mawsawi, Laith Q.
    Al-Safi, Rasha I.
    Neamati, Nouri
    EXPERT OPINION ON EMERGING DRUGS, 2008, 13 (02) : 213 - 225
  • [40] Identification of potential HIV-1 integrase strand transfer inhibitors: In silico virtual screening and QM/MM docking studies
    Reddy, K. K.
    Singh, S. K.
    Tripathi, S. K.
    Selvaraj, C.
    SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2013, 24 (07) : 581 - 595