Periods for transversal maps via Lefschetz numbers for periodic points

被引:20
作者
Guillamon, A
Jarque, X
Llibre, J
Ortega, J
Torregrosa, J
机构
[1] UNIV AUTONOMA BARCELONA, DEPT MATEMAT, E-08193 BARCELONA, SPAIN
[2] UNIV AUTONOMA BARCELONA, DEPT ECON & HIST ECON, E-08193 BARCELONA, SPAIN
关键词
periods; transversal maps; Lefschetz numbers;
D O I
10.2307/2155063
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f : M --> M be a C-1 map on a C-1 differentiable manifold. The map f is called transversal if for all m is an element of N the graph of f(m) intersects transversally the diagonal of M x M at each point (x, x) such that x is a fixed point of f(m). We study the set of periods of f by using the Lefschetz numbers for periodic points. We focus our study on transversal maps defined on compact manifolds such that their rational homology is H-0 approximate to Q, H-1 approximate to Q + Q and H-k approximate to {0} for k not equal 0, 1.
引用
收藏
页码:4779 / 4806
页数:28
相关论文
共 22 条
[1]  
ALSEDA L, 1993, ADV SERIES NONLINEAR, V5
[2]   THE BEHAVIOR OF THE INDEX OF PERIODIC POINTS UNDER ITERATIONS OF A MAPPING [J].
BABENKO, IK ;
BOGATYI, SA .
MATHEMATICS OF THE USSR-IZVESTIYA, 1992, 38 (01) :1-26
[3]  
BROWN RF, 1971, LEFSCHETZ FIXED POIN
[4]   PERIODS AND LEFSCHETZ ZETA-FUNCTIONS [J].
CASASAYAS, J ;
LLIBRE, J ;
NUNES, A .
PACIFIC JOURNAL OF MATHEMATICS, 1994, 165 (01) :51-66
[5]  
CASASAYAS J, 1991, PERIODIC ORBITS TRAN
[6]   DIOPHANTINE EQUATION X4-DY2=1 [J].
COHN, JHE .
QUARTERLY JOURNAL OF MATHEMATICS, 1975, 26 (103) :279-281
[7]  
COHN JHE, 1966, P LOND MATH SOC, V16, P153
[8]   FIXED-POINT INDEXES OF ITERATED MAPS [J].
DOLD, A .
INVENTIONES MATHEMATICAE, 1983, 74 (03) :419-435
[9]   PERIOD DOUBLING AND THE LEFSCHETZ FORMULA [J].
FRANKS, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 287 (01) :275-283
[10]  
Franks J.M., 1982, CBMS REGIONAL C SERI, V49