The Tits alternative for generalized triangle groups of type (3, 4, 2)

被引:0
作者
Howie, James [1 ]
Williams, Gerald [2 ]
机构
[1] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Univ Essex, Dept Math Sci, Colchester CO4 3SQ, Essex, England
来源
ALGEBRA & DISCRETE MATHEMATICS | 2008年 / 04期
关键词
Generalized triangle group; Tits alternative; free subgroup;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A generalized triangle group is a group that can be presented in the form G = < x, y | x(p) = y(q) = w(x, y) (r) = 1 > where p, q, r = 2 and w(x, y) is a cyclically reduced word of length at least 2 in the free product Z(p) * Z(q) = < x, y | xp = yq = 1 >. Rosenberger has conjectured that every generalized triangle group G satisfies the Tits alternative. It is known that the conjecture holds except possibly when the triple (p, q, r) is one of (2, 3, 2), (2, 4, 2), (2, 5, 2), (3, 3, 2), (3, 4, 2), or (3, 5, 2). Building on a result of Benyash-Krivets and Barkovich from this journal, we show that the Tits alternative holds in the case (p, q, r) = (3, 4, 2).
引用
收藏
页码:40 / 48
页数:9
相关论文
共 17 条
  • [1] Barkovich O.A., 2003, DOKL NAT AKAD NAUK B, V48, P28
  • [2] GENERALIZED TRIANGLE GROUPS
    BAUMSLAG, G
    MORGAN, JW
    SHALLEN, PB
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1987, 102 : 25 - 31
  • [3] Benyash-Krivets V. V., 2003, DOKL NAT AKAD NAUK B, V47, P29
  • [4] Benyash-Krivets V. V., 2003, DOKL NAT AKAD NAUK B, V47, P14
  • [5] Benyash-Krivets V.V., 2005, P INT C MATH ITS APP, P59
  • [6] Benyash-Krivets V. V, 2004, ALGEBRA DISCRETE MAT, V2004, P23
  • [7] Benyash-Krivets V.V, 2003, DOKL NAT AKAD NAUK B, V47, P24
  • [8] FREE SUBGROUPS AND DECOMPOSITIONS OF ONE-RELATOR PRODUCTS OF CYCLICS .1. THE TITS ALTERNATIVE
    FINE, B
    LEVIN, F
    ROSENBERGER, G
    [J]. ARCHIV DER MATHEMATIK, 1988, 50 (02) : 97 - 109
  • [9] Fine B., 1999, ALGEBRAIC GENERALIZA
  • [10] Fine Benjamin, 2000, P 4 INT C PUS KOR AU, P95