MINIMAL-SURFACES BOUNDED BY CONVEX CURVES IN PARALLEL PLANES

被引:29
作者
MEEKS, WH [1 ]
WHITE, B [1 ]
机构
[1] STANFORD UNIV,DEPT MATH,STANFORD,CA 94305
关键词
D O I
10.1007/BF02566647
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:263 / 278
页数:16
相关论文
共 20 条
[1]  
ANDERSON MT, 1985, ANN SCI ECOLE NORM S, V18, P89
[2]  
BARBOSA JL, 1976, AM J MATH, V19, P515
[3]   THE STRUCTURE OF SINGLY-PERIODIC MINIMAL-SURFACES [J].
CALLAHAN, M ;
HOFFMAN, D ;
MEEKS, WH .
INVENTIONES MATHEMATICAE, 1990, 99 (03) :455-481
[4]   EMBEDDED MINIMAL-SURFACES WITH AN INFINITE NUMBER OF ENDS [J].
CALLAHAN, M ;
HOFFMAN, D ;
MEEKS, WH .
INVENTIONES MATHEMATICAE, 1989, 96 (03) :459-505
[5]  
Chavel I., 1984, EIGENVALUES RIEMANNI
[6]  
Enneper A., 1869, Z MATH PHYS, V14, P393
[7]  
HILDEBRANDT S, 1969, ARCH RATION MECH AN, V35, P47
[8]   MINIMAL-SURFACES BASED ON THE CATENOID [J].
HOFFMAN, D ;
MEEKS, WH .
AMERICAN MATHEMATICAL MONTHLY, 1990, 97 (08) :702-730
[9]  
LAWSON HB, 1971, LECTURES MINIMAL SUB
[10]   THE CLASSICAL PLATEAU-PROBLEM AND THE TOPOLOGY OF 3-DIMENSIONAL MANIFOLDS - THE EMBEDDING OF THE SOLUTION GIVEN BY DOUGLAS-MORREY AND AN ANALYTIC PROOF OF DEHN LEMMA [J].
MEEKS, WH ;
YAU, ST .
TOPOLOGY, 1982, 21 (04) :409-442