FUZZY STABILITY OF AN ADDITIVE-QUADRATIC FUNCTIONAL EQUATION WITH THE FIXED POINT ALTERNATIVE

被引:0
作者
Seo, Jeong Pil [1 ]
Lee, Sungjin [2 ]
Saadati, Reza [3 ]
机构
[1] Ohsang High Sch, Gumi 730842, Kyeongsangbuk, South Korea
[2] Daejin Univ, Dept Math, Pochon 487711, Kyeonggi, South Korea
[3] Iran Univ Sci & Technol, Dept Math, Tehran, Iran
来源
JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS | 2015年 / 22卷 / 03期
关键词
fuzzy Banach space; fixed point; functional equation related to inner product space; Hyers-Ulam stability; quadratic mapping; additive mapping;
D O I
10.7468/jksmeb.2015.22.3.285
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [41], Th.M. Rassias proved that the norm defined over a real vector space V is induced by an inner product if and only if for a fixed positive integer l [GRAPHICS] holds for all x(1), . . . , x(2l) is an element of V. For the above equality, we can define the following functional equation [GRAPHICS] Using the fixed point method, we prove the Hyers-Ulam stability of the functional equation (0.1) in fuzzy Banach spaces.
引用
收藏
页码:285 / 298
页数:14
相关论文
共 52 条
[1]  
Aoki T., 1950, J MATH SOC JAPAN, V2, P64, DOI [10.2969/jmsj/00210064, DOI 10.2969/JMSJ/00210064]
[2]   Fuzzy bounded linear operators [J].
Bag, T ;
Samanta, SK .
FUZZY SETS AND SYSTEMS, 2005, 151 (03) :513-547
[3]  
Bag T., 2003, J FUZZY MATH, V11, P687
[4]  
Cadariu L., 2004, GRAZER MATH BERICHTE, V346, P43
[5]  
Cadariu L., 2003, JIPAM J INEQUAL PURE, V4
[6]   Fixed point methods for the generalized stability of functional equations in a single variable [J].
Cadariu, Liviu ;
Radu, Viorel .
FIXED POINT THEORY AND APPLICATIONS, 2008, 2008 (1)
[7]  
Cheng S. C., 1994, B CALCUTTA MATH SOC, V86, P429
[8]  
Cholewa P.W., 1984, AEQUATIONES MATH, V27, P76
[9]   ON THE STABILITY OF THE QUADRATIC MAPPING IN NORMED SPACES [J].
CZERWIK, S .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1992, 62 :59-64
[10]   A FIXED POINT THEOREM OF ALTERNATIVE FOR CONTRACTIONS ON A GENERALIZED COMPLETE METRIC SPACE [J].
DIAZ, JB ;
MARGOLIS, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 74 (02) :305-&