Rice Growth, Yield and Photosynthetic Responses to Elevated Atmospheric Carbon Dioxide Concentration and Drought

被引:12
|
作者
Baker, J. T. [1 ]
Allen, L. H., Jr. [2 ,3 ]
机构
[1] USDA ARS, Alternate Crops & Syst Lab, Bldg 001,Room 342,10300 Baltimore Ave, Beltsville, MD 20705 USA
[2] USDA ARS, Beltsville, MD USA
[3] Univ Florida, Gainesville, FL 32611 USA
关键词
Climate change; photosynthesis; respiration; water use; acclimation;
D O I
10.1300/J411v13n01_02
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Rice is a major food crop that should respond favorably to expected future increases in atmospheric carbon dioxide concentration. Due to uncertainties in the timing and amounts of monsoonal rainfall, drought is common in some minted rice production systems. In this paper, we summarize results of experiments conducted by the University of Florida and USDA-ARS at Gainesville, FL. USA. where the effects and interactions of elevated atmospheric carbon dioxide concentration and periodic drought were examined in relation to grain yield and canopy-scale gas exchanges, specifically photosynthesis, respiration, and evapotranspiration. Elevated CO2 increased rice growth, grain yield and canopy photosynthesis while reducing evapotranspiration by about 10%. During drought stress cycles, this water savings under elevated CO2 allowed photosynthesis to continue for one to two days longer compared with the ambient CO2 treatment. Rice canopy photosynthesis saturated with respect to CO2 near 500 mu mol mol(-1) and we found little evidence of photosynthetic acclimation or down-regulation in response to long-term CO2 enrichment treatments of 350 and 700 pmol mol(-1). Under a much broader range of long-term CO2 treatments (160 to 900 mu mol mol(-1)), a significant degree of photosynthetic down regulation was detected. Daytime CO2 enrichment resulted in higher canopy dark respiration compared with the ambient grown controls when compared at a common, near ambient nighttime CO2. We also detected a rapid and reversible, direct inhibition of canopy dark respiration rate with rising chamber CO2 at an air temperature of 28 degrees C.
引用
收藏
页码:7 / 30
页数:24
相关论文
共 50 条
  • [1] Rice responses to drought under carbon dioxide enrichment .1. Growth and yield
    Baker, JT
    Allen, LH
    Boote, KJ
    Pickering, NB
    GLOBAL CHANGE BIOLOGY, 1997, 3 (02) : 119 - 128
  • [2] Growth, yield and quality of maize with elevated atmospheric carbon dioxide and temperature in north-west India
    Abebe, A.
    Pathak, H.
    Singh, S. D.
    Bhatia, A.
    Harit, R. C.
    Kumar, Vinod
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2016, 218 : 66 - 72
  • [3] New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide concentration
    Gamage, Dananjali
    Thompson, Michael
    Sutherland, Mark
    Hirotsu, Naoki
    Makino, Amane
    Seneweera, Saman
    PLANT CELL AND ENVIRONMENT, 2018, 41 (06) : 1233 - 1246
  • [4] Enhanced Growth, Yield and Physiological Characteristics of Rice under Elevated Carbon Dioxide
    Abzar, A.
    Ahmad, Wan Juliana Wan
    Said, Mohd Nizam Mohd
    Doni, Febri
    Zaidan, Mohd Waznul Adly Mohd
    Fathurahman
    Zain, Che Radziah Che Mohd
    2017 UKM FST POSTGRADUATE COLLOQUIUM, 2018, 1940
  • [5] Elevated carbon dioxide influences yield and photosynthetic responses of hydroponically-grown sweet potato
    Mortley, D
    Hill, J
    Loretan, P
    Bonsi, C
    Hill, W
    Hileman, D
    Terse, A
    INTERNATIONAL SYMPOSIUM ON PLANT PRODUCTION IN CLOSED ECOSYSTEMS - AUTOMATION, CULTURE, AND ENVIRONMENT, 1997, (440): : 31 - 36
  • [6] Rice responses to drought under carbon dioxide enrichment .2. Photosynthesis and evapotranspiration
    Baker, JT
    Allen, LH
    Boote, KJ
    Pickering, NB
    GLOBAL CHANGE BIOLOGY, 1997, 3 (02) : 129 - 138
  • [7] Photosynthetic acclimation of maize to growth under elevated levels of carbon dioxide
    Maroco, JP
    Edwards, GE
    Ku, MSB
    PLANTA, 1999, 210 (01) : 115 - 125
  • [8] Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration
    Ainsworth, Elizabeth A.
    GLOBAL CHANGE BIOLOGY, 2008, 14 (07) : 1642 - 1650
  • [9] Sweetpotato cultivars responses to interactive effects of warming, drought, and elevated carbon dioxide
    Taduri, Shasthree
    Bheemanahalli, Raju
    Wijewardana, Chathurika
    Lone, Ajaz A. A.
    Meyers, Stephen L. L.
    Shankle, Mark
    Gao, Wei
    Reddy, K. Raja
    FRONTIERS IN GENETICS, 2023, 13
  • [10] ACCLIMATION OF RICE TO CHANGING ATMOSPHERIC CARBON-DIOXIDE CONCENTRATION
    ROWLANDBAMFORD, AJ
    BAKER, JT
    ALLEN, LH
    BOWES, G
    PLANT CELL AND ENVIRONMENT, 1991, 14 (06) : 577 - 583