SPARSE APPROXIMATION AND RECOVERY BY GREEDY ALGORITHMS IN BANACH SPACES

被引:17
作者
Temlyakov, V. N. [1 ,2 ]
机构
[1] Univ South Carolina, Columbia, SC 29208 USA
[2] Steklov Inst Math, Moscow, Russia
关键词
D O I
10.1017/fms.2014.7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study sparse approximation by greedy algorithms. We prove the Lebesgue-type inequalities for the weak Chebyshev greedy algorithm (WCGA), a generalization of the weak orthogonal matching pursuit to the case of a Banach space. The main novelty of these results is a Banach space setting instead of a Hilbert space setting. The results are proved for redundant dictionaries satisfying certain conditions. Then we apply these general results to the case of bases. In particular, we prove that the WCGA provides almost optimal sparse approximation for the trigonometric system in L-p, 2 <= p < infinity.
引用
收藏
页数:26
相关论文
共 22 条
[11]   Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit [J].
Needell, Deanna ;
Vershynin, Roman .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2009, 9 (03) :317-334
[12]   An example of an almost greedy uniformly bounded orthonormal basis for Lp(0,1) [J].
Nielsen, Morten .
JOURNAL OF APPROXIMATION THEORY, 2007, 149 (02) :188-192
[13]   Lebesgue-Type Inequalities for Greedy Approximation in Banach Spaces [J].
Savu, Daniel ;
Temlyakov, Vladimir N. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (02) :1098-1106
[14]   Greedy approximation with regard to non-greedy bases [J].
Temlyakov, V. N. ;
Yang, Mingrui ;
Ye, Peixin .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2011, 34 (03) :319-337
[15]   On performance of greedy algorithms [J].
Temlyakov, Vladimir N. ;
Zheltov, Pavel .
JOURNAL OF APPROXIMATION THEORY, 2011, 163 (09) :1134-1145
[16]   Greedy algorithms in Banach spaces [J].
Temlyakov, VN .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2001, 14 (03) :277-292
[17]   Greedy algorithm and m-term trigonometric approximation [J].
Temlyakov, VN .
CONSTRUCTIVE APPROXIMATION, 1998, 14 (04) :569-587
[18]   Nonlinear methods of approximation [J].
Temlyakov, VN .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2003, 3 (01) :33-107
[19]   Greed is good: Algorithmic results for sparse approximation [J].
Tropp, JA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (10) :2231-2242
[20]  
Wang J., 2012, ARXIV12114293V1