1ST ORDER AUTOREGRESSIVE TIME-SERIES WITH NEGATIVE BINOMIAL AND GEOMETRIC MARGINALS

被引:118
作者
ALOSH, MA
ALY, EEAA
机构
[1] KING SAUD UNIV,DEPT STAT,RIYADH,SAUDI ARABIA
[2] UNIV ALBERTA,DEPT STAT & APPL PROBABIL,EDMONTON T6G 2G1,ALBERTA,CANADA
基金
加拿大自然科学与工程研究理事会;
关键词
NEGATIVE BINOMIAL PROCESSES; GENERALIZED GEOMETRIC AR(1) PROCESSES; BINOMIAL COMPOUNDING;
D O I
10.1080/03610929208830925
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we present first order autoregressive (AR(1)) time series with negative binomial and geometric marginals. These processes are the discrete analogues of the gamma and exponential processes introduced by Sim (1990). Many properties of the processes discussed here, such as autocorrelation, regression and joint distributions, are studied.
引用
收藏
页码:2483 / 2492
页数:10
相关论文
共 14 条
[1]  
Al-Osh M.A., 1987, J TIME SER ANAL, V8, DOI [10.1111/j.1467-9892.1987.tb00438.x, DOI 10.1111/J.1467-9892.1987.TB00438.X]
[2]  
Alzaid A.A., 1988, STAT NEERL, V42, DOI DOI 10.1111/J.1467-9574.1988.TB01521.X
[3]   1ST-ORDER AUTOREGRESSIVE GAMMA-SEQUENCES AND POINT-PROCESSES [J].
GAVER, DP ;
LEWIS, PAW .
ADVANCES IN APPLIED PROBABILITY, 1980, 12 (03) :727-745
[4]  
Johnson N.L., 1969, DISCRETE DISTRIBUTIO
[5]   CONDITIONAL LEAST-SQUARES ESTIMATION FOR STOCHASTIC-PROCESSES [J].
KLIMKO, LA ;
NELSON, PI .
ANNALS OF STATISTICS, 1978, 6 (03) :629-642
[7]   A NEW AUTOREGRESSIVE TIME-SERIES MODEL IN EXPONENTIAL VARIABLES (NEAR(1)) [J].
LAWRANCE, AJ ;
LEWIS, PAW .
ADVANCES IN APPLIED PROBABILITY, 1981, 13 (04) :826-845
[8]  
Lewis PeterA.W., 1989, STOCHASTIC MODELS, P1, DOI [10.1080/15326348908807096, DOI 10.1080/15326348908807096]
[10]  
Sim C. H., 1989, J STATIST COMPUT SIM, V34, P29