Mutual Dimension

被引:11
作者
Case, Adam [1 ]
Lutz, Jack H. [1 ]
机构
[1] Iowa State Univ, Dept Comp Sci, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
Computable analysis; data processing inequality; effective fractal dimensions; Kolmogorov complexity; mutual information;
D O I
10.1145/2786566
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We define the lower and upper mutual dimensions mdim(x : y) and Mdim(x : y) between any two points x and y in Euclidean space. Intuitively, these are the lower and upper densities of the algorithmic information shared by x and y. We show that these quantities satisfy the main desiderata for a satisfactory measure of mutual algorithmic information. Our main theorem, the data processing inequality for mutual dimension, says that if f : R-m -> R-n is computable and Lipschitz, then the inequalities mdim(f (x) : y) <= mdim(x : y) and Mdim(f (x) : y) <= Mdim(x : y) hold for all x is an element of R-m and y is an element of R-t. We use this inequality and related inequalities that we prove in like fashion to establish conditions under which various classes of computable functions on Euclidean space preserve or otherwise transform mutual dimensions between points.
引用
收藏
页数:26
相关论文
共 26 条
[1]  
[Anonymous], 1989, KOLMOGOROV COMPLEXIT
[2]   Effective strong dimension in algorithmic information and computational complexity [J].
Athreya, Krishna B. ;
Hitchcock, John M. ;
Lutz, Jack H. ;
Mayordomo, Elvira .
SIAM JOURNAL ON COMPUTING, 2007, 37 (03) :671-705
[3]   MUTUAL INFORMATION AND MAXIMAL CORRELATION AS MEASURES OF DEPENDENCE [J].
BELL, CB .
ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (02) :587-&
[4]   Computing Space-Filling Curves [J].
Couch, P. J. ;
Daniel, B. D. ;
McNicholl, Timothy H. .
THEORY OF COMPUTING SYSTEMS, 2012, 50 (02) :370-386
[5]  
Cover T. M., 2006, ELEMENTS INFORM THEO
[6]  
Dougherty R, 2014, T AM MATH SOC, V366, P3027
[7]  
Falconer K.J., 2003, FRACTAL GEOMETRY
[8]  
Gacs P., 1974, SOV MATH DOKL, V15, P1480
[9]  
Gacs P., 1974, SOV MATH DOKL, V15, P1477
[10]  
Gu XY, 2006, ANN IEEE SYMP FOUND, P469