REPRESENTATION AND CLASSIFICATION OF COXETER MONOIDS

被引:14
|
作者
TSARANOV, SV [1 ]
机构
[1] ACAD SCI USSR,INST SYST STUDIES,MOSCOW 117312,USSR
关键词
D O I
10.1016/S0195-6698(13)80073-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The monoids under consideration are defined, abstractly by generators and relations in a similar way to Coxeter groups. They correspond to systems of minimal parabolic subgroups in BN-pairs or amalgams, and are related to chamber systems. More examples are connected with a notion of diagram geometry. The theory developed in this paper is aimed at a classification of monoids that have an attractor. The latter means that the corresponding group is finite. © 1990, Academic Press Inc. (London) Limited. All rights reserved.
引用
收藏
页码:189 / 204
页数:16
相关论文
共 50 条
  • [1] THE CLASSIFICATION OF COXETER-TYPE MONOIDS HAVING ATTRACTORS
    TSARANOV, SV
    DOKLADY AKADEMII NAUK SSSR, 1989, 304 (06): : 1306 - 1308
  • [2] Coxeter groups, Coxeter monoids and the Bruhat order
    Toby Kenney
    Journal of Algebraic Combinatorics, 2014, 39 : 719 - 731
  • [3] Coxeter groups, Coxeter monoids and the Bruhat order
    Kenney, Toby
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2014, 39 (03) : 719 - 731
  • [4] The Todd-Coxeter algorithm for semigroups and monoids
    Coleman, T. D. H.
    Mitchell, J. D.
    Smith, F. L.
    Tsalakou, M.
    SEMIGROUP FORUM, 2024, 108 (03) : 536 - 593
  • [5] Partial symmetry, reflection monoids and Coxeter groups
    Everitt, Brent
    Fountain, John
    ADVANCES IN MATHEMATICS, 2010, 223 (05) : 1782 - 1814
  • [6] Singular Artin Monoids of Finite Coxeter Type Are Automatic
    Corran, Ruth
    Hoffmann, Michael
    Kuske, Dietrich
    Thomas, Richard M.
    LANGUAGE AND AUTOMATA THEORY AND APPLICATIONS, 2011, 6638 : 250 - +
  • [7] A REMARK ON THE REPRESENTATION OF TRACE MONOIDS
    CHOFFRUT, C
    SEMIGROUP FORUM, 1990, 40 (02) : 143 - 152
  • [8] REPRESENTATION OF TYPE-A MONOIDS
    ASIBONGIBE, U
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1991, 44 (01) : 131 - 138
  • [9] Garside families in Artin-Tits monoids and low elements in Coxeter groups
    Dehornoy, Patrick
    Dyer, Matthew
    Hohlweg, Christophe
    COMPTES RENDUS MATHEMATIQUE, 2015, 353 (05) : 403 - 408
  • [10] CLASSIFICATION OF MONOIDS OF LIE TYPE
    PUTCHA, MS
    JOURNAL OF ALGEBRA, 1994, 163 (03) : 636 - 662