ON THE CONVERGENCE OF INEXACT QUASI-NEWTON METHODS

被引:1
|
作者
MORET, I
机构
关键词
D O I
10.1080/00207168908803733
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:117 / 137
页数:21
相关论文
共 50 条
  • [31] LOCAL AND SUPERLINEAR CONVERGENCE FOR PARTIALLY KNOWN QUASI-NEWTON METHODS
    Engels, John R.
    Martinez, Hector J.
    SIAM JOURNAL ON OPTIMIZATION, 1991, 1 (01) : 42 - 56
  • [32] Local convergence of quasi-Newton methods under metric regularity
    Artacho, F. J. Aragon
    Belyakov, A.
    Dontchev, A. L.
    Lopez, M.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2014, 58 (01) : 225 - 247
  • [33] Explicit Convergence Rates of Greedy and Random Quasi-Newton Methods
    Lin, Dachao
    Ye, Haishan
    Zhang, Zhihua
    Journal of Machine Learning Research, 2022, 23
  • [34] Incremental Quasi-Newton Methods with Faster Superlinear Convergence Rates
    Liu, Zhuanghua
    Luo, Luo
    Low, Bryan Kian Hsiang
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 13, 2024, : 14097 - 14105
  • [35] GLOBAL CONVERGENCE OF A CLASS OF QUASI-NEWTON METHODS ON CONVEX PROBLEMS
    BYRD, RH
    NOCEDAL, J
    YUAN, YX
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (05) : 1171 - 1190
  • [36] Superlinear convergence of smoothing quasi-Newton methods for nonsmooth equations
    Chen, XJ
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 80 (01) : 105 - 126
  • [37] On the local convergence of quasi-Newton methods for nonlinear complementarity problems
    Lopes, VLR
    Martínez, JM
    Pérez, R
    APPLIED NUMERICAL MATHEMATICS, 1999, 30 (01) : 3 - 22
  • [38] New Results on Superlinear Convergence of Classical Quasi-Newton Methods
    Anton Rodomanov
    Yurii Nesterov
    Journal of Optimization Theory and Applications, 2021, 188 : 744 - 769
  • [39] Local convergence of quasi-Newton methods under metric regularity
    F. J. Aragón Artacho
    A. Belyakov
    A. L. Dontchev
    M. López
    Computational Optimization and Applications, 2014, 58 : 225 - 247
  • [40] Convergence of quasi-Newton methods for solving constrained generalized equations*
    Andreani, Roberto
    Carvalho, Rui M.
    Secchin, Leonardo D.
    Silva, Gilson N.
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2022, 28