GENERAL PRODUCT OF 2 FINITELY GENERATED ABELIAN GROUPS

被引:3
作者
SCHENKMAN, E
机构
关键词
D O I
10.2307/2036893
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:202 / +
页数:1
相关论文
共 50 条
[31]   Which finitely generated Abelian groups admit isomorphic Cayley graphs? [J].
Loeh, Clara .
GEOMETRIAE DEDICATA, 2013, 164 (01) :97-111
[32]   On Fuchs' problem for finitely generated abelian groups: The small torsion case [J].
Del Corso, I. ;
Stefanello, L. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2025, 111 (01)
[33]   Canonical differential calculi for finitely generated Abelian groups and their fermionic representations [J].
Dai, J ;
Song, XC ;
Xiong, CS .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2002, 37 (04) :393-396
[34]   TENSOR POWERS OF MODULES OVER FINITELY GENERATED ABELIAN-GROUPS [J].
BIERI, R ;
GROVES, JRJ .
JOURNAL OF ALGEBRA, 1985, 97 (01) :68-78
[35]   ELEMENTARY EQUIVALENCE AND GENUS OF FINITELY GENERATED FINITE-BY-ABELIAN GROUPS [J].
OGER, F .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1981, 293 (01) :1-4
[36]   Properties of Abelian-by-cyclic shared by soluble finitely generated groups [J].
Gherbi, Fares ;
Trabelsi, Nadir .
TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (03) :912-918
[37]   Which finitely generated Abelian groups admit isomorphic Cayley graphs? [J].
Clara Löh .
Geometriae Dedicata, 2013, 164 :97-111
[38]   Subgroup separability of certain HNN extensions of finitely generated abelian groups [J].
Wong, PC .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1997, 27 (01) :359-365
[39]   The asymptotic shape theorem for the frog model on finitely generated abelian groups*** [J].
Coletti, Cristian F. ;
de Lima, Lucas R. .
ESAIM-PROBABILITY AND STATISTICS, 2021, 25 :204-219
[40]   COMMENSURABILITY AND QI CLASSIFICATION OF FREE PRODUCTS OF FINITELY GENERATED ABELIAN GROUPS [J].
Behrstock, Jason A. ;
Januszkiewicz, Tadeusz ;
Neumann, Walter D. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (03) :811-813